<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.producthunt.com/@glenn_jocher">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/r
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码,含有代
资源推荐
资源详情
资源评论
收起资源包目录
人工智能本科毕业设计-基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码 (342个子文件)
setup.cfg 1KB
.isort.cfg 307B
gnn_propagate.cpp 693B
build_adjacency_matrix.cpp 640B
gnn_propagate_kernel.cu 1KB
build_adjacency_matrix_kernel.cu 1KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.flake8 496B
track_all.gif 7.83MB
track_pedestrians.gif 3.63MB
.gitattributes 75B
.gitignore 2KB
.gitignore 89B
.gitignore 60B
.gitignore 14B
.gitkeep 0B
.gitmodules 203B
tutorial.ipynb 55KB
1.jpeg 3KB
bus.jpg 476KB
ranking_results.jpg 186KB
zidane.jpg 165KB
actmap.jpg 29KB
2.jpg 4KB
LICENSE 34KB
LICENSE 1KB
LICENSE 1KB
Makefile 580B
Makefile 101B
README.md 15KB
MODEL_ZOO.md 11KB
README.md 11KB
AWESOME_REID.md 7KB
CONTRIBUTING.md 5KB
README.md 5KB
README.md 5KB
README.md 2KB
README.md 2KB
README.md 1KB
README.md 806B
README.md 665B
README.md 424B
0001_img.png 2.91MB
0001_back.png 2.07MB
pha_pic.png 48KB
osnet_ibn_x1_0_MSMT17.pth 2.84MB
datasets.py 45KB
general.py 37KB
nasnet.py 35KB
train.py 33KB
common.py 33KB
export.py 27KB
wandb_utils.py 27KB
plots.py 22KB
tf.py 20KB
senet.py 20KB
datamanager.py 20KB
val.py 18KB
osnet_search.py 18KB
osnet_ain.py 17KB
engine.py 17KB
osnet.py 17KB
osnet_child.py 16KB
dataset.py 16KB
resnet.py 15KB
yolo.py 15KB
metrics.py 14KB
hacnn.py 13KB
detect.py 13KB
track.py 13KB
torch_utils.py 13KB
refiner.py 12KB
main.py 12KB
cuhk03.py 12KB
json_logger.py 11KB
augmentations.py 11KB
densenet.py 11KB
radam.py 11KB
osnet.py 11KB
inceptionv4.py 11KB
inceptionresnetv2.py 11KB
transforms.py 10KB
xception.py 9KB
torchtools.py 9KB
loss.py 9KB
model_complexity.py 9KB
model.py 9KB
resnetmid.py 9KB
pcb.py 9KB
resnet_ibn_a.py 8KB
mlfn.py 8KB
sampler.py 8KB
mobilenetv2.py 8KB
default_config.py 8KB
resnet_ibn_b.py 8KB
shufflenetv2.py 8KB
kalman_filter.py 8KB
default_config.py 8KB
共 342 条
- 1
- 2
- 3
- 4
资源评论
王二空间
- 粉丝: 6575
- 资源: 1997
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【小程序毕业设计】微信点餐系统源码(完整前后端+mysql+说明文档).zip
- 【小程序毕业设计】python童心党史小程序源码(完整前后端+mysql+说明文档).zip
- DLL库依赖分析工具(Dependencies-x64)
- 【小程序毕业设计】同城交易小程序源码(完整前后端+mysql+说明文档).zip
- JavaScript《基于SpringBoot的多人博客系统(仿CSDN)》+项目源码+文档说明
- 【小程序毕业设计】数学辅导微信小程序源码(完整前后端+mysql+说明文档+LW).zip
- Java《基于springboot框架搭建的B2C商城》+项目源码+文档说明
- 【小程序毕业设计】面向企事业单位的项目申报小程序源码(完整前后端+mysql+说明文档+LW).zip
- 【小程序毕业设计】论坛小程序源码(完整前后端+mysql+说明文档).zip
- Java《基于SSM的高校共享单车管理系统》+项目源码+文档说明
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功