![logo_t](./images/hyperlpr_logo.png)
## HyperLPR3 - High Performance License Plate Recognition Framework.
#### [![1](https://badge.fury.io/py/hyperlpr3.svg "title")](https://pypi.org/project/hyperlpr3/)[![1](https://img.shields.io/pypi/pyversions/hyperlpr3.svg "title")](https://pypi.org/manage/project/hyperlpr3/releases/)[![](https://jitpack.io/v/HyperInspire/hyperlpr3-android-sdk.svg)](https://jitpack.io/#HyperInspire/hyperlpr3-android-sdk)
[中文文档](README_CH.md)
### Demo APP Installation
- Android APP:[Scan QR Code](http://fir.tunm.top/hyperlpr)
### Quick Installation
`python -m pip install hyperlpr3`
###### support:python3, Windows, Mac, Linux, Raspberry Pi。
###### 720p cpu real-time (st on MBP r15 2.2GHz haswell).
#### Quick Test
```bash
# image url
lpr3 sample -src https://koss.iyong.com/swift/v1/iyong_public/iyong_2596631159095872/image/20190221/1550713902741045679.jpg
# image path
lpr3 sample -src images/test_img.jpg -det high
```
#### How to Use
```python
# import opencv
import cv2
# import hyperlpr3
import hyperlpr3 as lpr3
# Instantiate object
catcher = lpr3.LicensePlateCatcher()
# load image
image = cv2.imread("images/test_img.jpg")
# print result
print(catcher(image))
```
#### Start the WebAPI service
```bash
# start server
lpr3 rest --port 8715 --host 0.0.0.0
```
Path to open SwaggerUI after startup:[http://localhost:8715/api/v1/docs](http://localhost:8715/api/v1/docs) View and test the online Identification API service:
![swagger_ui](./images/swagger-ui.png)
#### Q&A
Q:Whether the accuracy of android in the project is consistent with that of apk-demo?
A:Please compile or download the Android shared library from the release and copy it to Prj-Android for testing。
Q:Source of training data for license plates?
A:Since the license plate data used for training involves legal privacy and other issues, it cannot be provided in this project. Open more big data sets [CCPD](https://github.com/detectRecog/CCPD) registration dataset。
Q:Provision of training code?
A:The resources provide the old training code, and the training methods for HyperLPR3 will be sorted out and presented later。
#### Resources
- [HyperLPR3车牌识别-五分钟搞定: 中文车牌识别光速部署与使用](https://blog.csdn.net/weixin_40193776/article/details/129258107)
- [HyperLPR3车牌识别-Android-SDK光速部署与使用](https://blog.csdn.net/weixin_40193776/article/details/129394240)
- [HyperLPR3车牌识别-Linux/MacOS使用:C/C++库编译](https://blog.csdn.net/weixin_40193776/article/details/129295679)
- [HyperLPR3车牌识别-Android使用:SDK编译与部署](https://blog.csdn.net/weixin_40193776/article/details/129354938)
- To be added... Contributions welcome
#### Other Versions
- [HyperLPRv1](https://github.com/szad670401/HyperLPR/tree/v1)
- [HyperLPRv2](https://github.com/szad670401/HyperLPR/tree/v2)
### TODO
- Support for rapid deployment of WebApi services
- Support multiple license plates and double layers
- Support large Angle license plate
- Lightweight recognition model
### Specialty
- 720p faster, single core Intel 2.2G CPU (MaBook Pro 2015) average recognition time is less than 100ms
- End-to-end license plate recognition does not require character segmentation
- The recognition rate is high, and the accuracy of the entrance and exit scene is about 95%-97%
- Support cross-platform compilation and rapid deployment
### Matters Need Attention:
- The C++ and Python implementations of this project are separate
- When compiling C++ projects, OpenCV 4.0 and MNN 2.0 must be used, otherwise it will not compile
- Android project compilation ndk as far as possible to use version 21
### Python Dependency
- opencv-python (>3.3)
- onnxruntime (>1.8.1)
- fastapi (0.92.0)
- uvicorn (0.20.0)
- loguru (0.6.0)
- python-multipart
- tqdm
- requests
### Cross-platform support
#### Platform
- Linux: x86、Armv7、Armv8
- MacOS: x86
- Android: arm64-v8a、armeabi-v7a
#### Embedded Development Board
- Rockchip: rv1109rv1126(RKNPU)
### CPP Dependency
- Opencv 4.0 above
- MNN 2.0 above
### C/C++ Compiling Dependencies
Compiling C/C++ projects requires the use of third-party dependency libraries. After downloading the library, unzip it, and put it into the root directory (the same level as CMakeLists.txt) by copying or soft linking.[baidu drive](https://pan.baidu.com/s/1zfP2MSsG1jgxB_MjvpwZJQ) code: eu31
### Linux/Mac Shared Library Compilation
- Need to place or link dependencies in the project root (same level as CMakeLists.txt)
- We recommend you to compile OpenCV yourself and install it into the system. This can help reduce compilation errors caused by version mismatches and compiler issues with system dependencies. However, you can also try using the pre-compiled OpenCV static library we provide for compilation. To do this, you need to enable the **LINUX_USE_3RDPARTY_OPENCV** switch.
```bash
# execute the script
sh command/build_release_linux_share.sh
```
Compiled to the **build/linux/install/hyperlpr3** dir,Which contains:
- include - header file
- lib - shared dir
- resource - test-images and models dir
Copy the files you need into your project
### Linux/Mac Compiling the Demo
- You need to complete the previous compilation step and ensure it's successful. The compiled files will be located in the root directory: **build/linux/install/hyperlpr3**. You will need to manually copy them to the current directory.
- Go to the **Prj-Linux** folder
```bash
# go to Prj-linux
cd Prj-Linux
# exec sh
sh build.sh
```
The executable program is generated after compilation: **PlateRecDemo**,and Run the program
```bash
# go to build
cd build/
# first param models dir, second param image path
./PlateRecDemo ../hyperlpr3/resource/models/r2_mobile ../hyperlpr3/resource/images/test_img.jpg
```
### Linux/Mac Quick Use SDK Code Example
```C
// Load image
cv::Mat image = cv::imread(image_path);
// Create a ImageData
HLPR_ImageData data = {0};
data.data = image.ptr<uint8_t>(0); // Setting the image data flow
data.width = image.cols; // Setting the image width
data.height = image.rows; // Setting the image height
data.format = STREAM_BGR; // Setting the current image encoding format
data.rotation = CAMERA_ROTATION_0; // Setting the current image corner
// Create a Buffer
P_HLPR_DataBuffer buffer = HLPR_CreateDataBuffer(&data);
// Configure license plate recognition parameters
HLPR_ContextConfiguration configuration = {0};
configuration.models_path = model_path; // Model folder path
configuration.max_num = 5; // Maximum number of license plates
configuration.det_level = DETECT_LEVEL_LOW; // Level of detector
configuration.use_half = false;
configuration.nms_threshold = 0.5f; // Non-maxima suppress the confidence threshold
configuration.rec_confidence_threshold = 0.5f; // License plate number text threshold
configuration.box_conf_threshold = 0.30f; // Detector threshold
configuration.threads = 1;
// Instantiating a Context
P_HLPR_Context ctx = HLPR_CreateContext(&configuration);
// Query the Context state
HREESULT ret = HLPR_ContextQueryStatus(ctx);
if (ret != HResultCode::Ok) {
printf("create error.\n");
return -1;
}
HLPR_PlateResultList results = {0};
// Execute LPR
HLPR_ContextUpdateStream(ctx, buffer, &results);
for (int i = 0; i < results.plate_size; ++i) {
// Getting results
std::string type;
if (results.plates[i].type == HLPR_PlateType::PLATE_TYPE_UNKNOWN) {
type = “Unknown";
} else {
type = TYPES[results.plates[i].type];
}
printf("<%d> %s, %s, %f\n", i + 1, type.c_str(),
results.plates[i].code, results.plates[i].text_confidence);
}
// Release Buffer
HLPR_ReleaseDataBuffer(buffer);
// Release Context
HLPR_ReleaseContext(ctx);
```
### Android: Compile the Shared Library
- The first step is to install