# Viola-Jones Face Detection for Matlab
### A CSCi 5561 Spring 2015 Semester Project
Authors: Chee Yi Ong, Stephen Peyton
### Introduction
This is a slightly modified Viola-Jones face detection algorithm built using Matlab. Here's a quick rundown of the code flow:
* Preprocessing: variance normalization, gamma correction for ‘hard’ (under/over-exposed) images
* Train weak classifiers from Haar-like features
* Boost weak classifiers using Adaboost
* Face detection using a cascade structure
### Assumptions
1. Frontal-facing images ONLY.
2. Background is not cluttered. Solid-colored background works the best.
3. Tilting of the head is at a minimum.
4. Image size is approximately 300x400 or similar. Individual features are a minimum of
19x19, because that is the smallest size of a single Haar feature or classifier.
5. One face-of-interest per image.
### Instructions
This folder contains two subfolders: `trainHaar` and `detectFaces`. `trainHaar` consists of the training algorithm which trains classifiers using Haar-like features, while `detectFaces` uses the trained classifiers to detect faces.
The `main` functions for both parts of the face detection routine are named identically to the folder containing the code, i.e., `trainHaar.m` for the training part, and `detectFaces.m` for the detection part.
1. Training: simply start the training by running the script `trainHaar` on the command line. Note that this takes _approximately 21 hours_ on a 2.6GHz quad-core i7.
2. Detection: `detectFaces('image.jpg')` or `detectFaces('someDirectory/image.jpg')`.
### Opportunities for improvements:
* Train algorithm with a larger set of images
* Better thresholding with more Adaboost training rounds
* Better cascade structuring with fewer, stronger classifiers: real-time detection possible
### Acknowledgements
* University of Minnesota, Twin Cities
* Viola, Paul, and Michael J. Jones. “Robust real-time face detection.” International journal of computer vision 57.2 (2004): 137-154.
* Freund, Yoav and Schapire, Robert E.. “A decision-theoretic generalization of on-line learning and an application to boosting.” Second European Conference, EuroCOLT ’95, pages 23–37, Springer-Verlag, 1995.
* Anila, S. and Devarajan N.. “Preprocessing Technique for Face Recognition Applications under Varying Illumination Conditions.” Global Journal of Computer Science and Technology 12.11-F (2012).
* MIT Center for Biological and Computational Learning. “CBCL Face Database 1”. N. p., 2015. Web. Accessed 16 April 2015. http://cbcl.mit.edu/software-datasets/FaceData2.html
* “AT&T Face Dataset”, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
该资源主要包括一个基于haar特征+AdaBoost,CascadeBoost算法的人脸检测原理文档+2个AdaBoost的matlab代码,以及一个CascadeBoost的matlab代码。代码的注释很多很仔细,适合初学者。
资源推荐
资源详情
资源评论
收起资源包目录
基于haar特征+AdaBoost,CascadeBoost算法的人脸检测原理+matlab代码 (7274个子文件)
trainHaar.asv 13KB
~$问题.docx 162B
Lenna.jpg 23KB
cy.jpg 16KB
girl.jpg 10KB
baby.jpg 10KB
Lenna_gamma_corrected.jpg 9KB
LICENSE 1KB
trainHaar.m 13KB
trainCascadeAdaBoost.m 11KB
trainAdaBoostLearner.m 8KB
detectFaces.m 6KB
FeaSubsetCascadeAdaBoost.m 3KB
BoostingAlg.m 3KB
ShowTest.m 3KB
testCascadeAdaBoost.m 3KB
FastScanImage.m 3KB
adaboost.m 3KB
SimpleTrain.m 2KB
calcHaarVal.m 2KB
calcHaarVal.m 2KB
LearnWeakClassifier.m 1KB
cascade.m 1KB
testFeatureSubsetCascadeBoost.m 1KB
ComputeROC.m 1KB
gamma_correction.m 1KB
EnumAllFeatures.m 1KB
bootstrapTest.m 1KB
EvaluateImage.m 1KB
adjust_range.m 1KB
VecFeature.m 916B
SimpleTest.m 814B
ComputeFeatures.m 786B
ScanImageFixedSize.m 781B
CalcIntegralImage.m 760B
MakeFeaturePic.m 732B
Train.m 646B
integralImg.m 589B
getCorners.m 511B
getCorners.m 476B
ScanImageOverScale.m 445B
integralImg.m 408B
ShowClassifierPic.m 389B
test.m 363B
ComputeBoxSum.m 353B
VecAllFeatures.m 346B
PruneDetections.m 338B
ApplyDetector.m 236B
VecBoxSum.m 210B
DisplayDetections.m 209B
test.m 31B
trainedClassifiers.mat 18KB
Cparams.mat 11KB
README.md 3KB
基于AdaBoost算法的人脸检测.pdf 805KB
369.pgm 374B
1600.pgm 374B
1698.pgm 374B
235.pgm 374B
333.pgm 374B
603.pgm 374B
2164.pgm 374B
2371.pgm 374B
1433.pgm 374B
67.pgm 374B
1505.pgm 374B
1449.pgm 374B
340.pgm 374B
1076.pgm 374B
560.pgm 374B
330.pgm 374B
103.pgm 374B
1520.pgm 374B
1210.pgm 374B
2268.pgm 374B
13.pgm 374B
58.pgm 374B
921.pgm 374B
187.pgm 374B
444.pgm 374B
22.pgm 374B
400.pgm 374B
69.pgm 374B
1359.pgm 374B
1871.pgm 374B
751.pgm 374B
2196.pgm 374B
1549.pgm 374B
1298.pgm 374B
248.pgm 374B
1018.pgm 374B
2393.pgm 374B
817.pgm 374B
1681.pgm 374B
1096.pgm 374B
361.pgm 374B
1070.pgm 374B
2001.pgm 374B
1246.pgm 374B
239.pgm 374B
共 7274 条
- 1
- 2
- 3
- 4
- 5
- 6
- 73
qq_28938403
- 粉丝: 12
- 资源: 8
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 10、安徽省大学生学科和技能竞赛A、B类项目列表(2019年版).xlsx
- 9、教育主管部门公布学科竞赛(2015版)-方喻飞
- C语言-leetcode题解之83-remove-duplicates-from-sorted-list.c
- C语言-leetcode题解之79-word-search.c
- C语言-leetcode题解之78-subsets.c
- C语言-leetcode题解之75-sort-colors.c
- C语言-leetcode题解之74-search-a-2d-matrix.c
- C语言-leetcode题解之73-set-matrix-zeroes.c
- 树莓派物联网智能家居基础教程
- YOLOv5深度学习目标检测基础教程
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
前往页