#!/usr/bin/env python
# coding: utf-8
# In[18]:
import random
import math
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]
# In[2]:
# 读取数据
def read_tsp(path):
lines = open(path, 'r').readlines()
assert 'NODE_COORD_SECTION\n' in lines
index = lines.index('NODE_COORD_SECTION\n')
data = lines[index + 1:-1]
tmp = []
for line in data:
line = line.strip().split(' ')
if line[0] == 'EOF':
continue
tmpline = []
for x in line:
if x == '':
continue
else:
tmpline.append(float(x))
if tmpline == []:
continue
tmp.append(tmpline)
data = tmp
return data
# In[19]:
class GA(object):
def __init__(self, num_city, num_total, iteration, data):
self.num_city = num_city
self.num_total = num_total
self.scores = []
self.iteration = iteration
self.location = data
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list
self.dis_mat = self.compute_dis_mat(num_city, data)
self.fruits = self.greedy_init(self.dis_mat,num_total,num_city)
# 显示初始化后的最佳路径
scores = self.compute_adp(self.fruits)
sort_index = np.argsort(-scores)
init_best = self.fruits[sort_index[0]]
init_best = self.location[init_best]
# 存储每个iteration的结果,画出收敛图
self.iter_x = [0]
self.iter_y = [1. / scores[sort_index[0]]]
def random_init(self, num_total, num_city):
tmp = [x for x in range(num_city)]
result = []
for i in range(num_total):
random.shuffle(tmp)
result.append(tmp.copy())
return result
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
# 所有起始点都已经生成了
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
# 找到一条最近邻路径
result_one = [current]
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
current = tmp_choose
result_one.append(tmp_choose)
rest.remove(tmp_choose)
result.append(result_one)
start_index += 1
return result
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
return dis_mat
# 计算路径长度
def compute_pathlen(self, path, dis_mat):
try:
a = path[0]
b = path[-1]
except:
import pdb
pdb.set_trace()
result = dis_mat[a][b]
for i in range(len(path) - 1):
a = path[i]
b = path[i + 1]
result += dis_mat[a][b]
return result
# 计算种群适应度
def compute_adp(self, fruits):
adp = []
for fruit in fruits:
if isinstance(fruit, int):
import pdb
pdb.set_trace()
length = self.compute_pathlen(fruit, self.dis_mat)
adp.append(1.0 / length)
return np.array(adp)
def swap_part(self, list1, list2):
index = len(list1)
list = list1 + list2
list = list[::-1]
return list[:index], list[index:]
def ga_cross(self, x, y):
len_ = len(x)
assert len(x) == len(y)
path_list = [t for t in range(len_)]
order = list(random.sample(path_list, 2))
order.sort()
start, end = order
# 找到冲突点并存下他们的下标,x中存储的是y中的下标,y中存储x与它冲突的下标
tmp = x[start:end]
x_conflict_index = []
for sub in tmp:
index = y.index(sub)
if not (index >= start and index < end):
x_conflict_index.append(index)
y_confict_index = []
tmp = y[start:end]
for sub in tmp:
index = x.index(sub)
if not (index >= start and index < end):
y_confict_index.append(index)
assert len(x_conflict_index) == len(y_confict_index)
# 交叉
tmp = x[start:end].copy()
x[start:end] = y[start:end]
y[start:end] = tmp
# 解决冲突
for index in range(len(x_conflict_index)):
i = x_conflict_index[index]
j = y_confict_index[index]
y[i], x[j] = x[j], y[i]
assert len(set(x)) == len_ and len(set(y)) == len_
return list(x), list(y)
def ga_parent(self, scores, ga_choose_ratio):
sort_index = np.argsort(-scores).copy()
sort_index = sort_index[0:int(ga_choose_ratio * len(sort_index))]
parents = []
parents_score = []
for index in sort_index:
parents.append(self.fruits[index])
parents_score.append(scores[index])
return parents, parents_score
def ga_choose(self, genes_score, genes_choose):
sum_score = sum(genes_score)
score_ratio = [sub * 1.0 / sum_score for sub in genes_score]
rand1 = np.random.rand()
rand2 = np.random.rand()
for i, sub in enumerate(score_ratio):
if rand1 >= 0:
rand1 -= sub
if rand1 < 0:
index1 = i
if rand2 >= 0:
rand2 -= sub
if rand2 < 0:
index2 = i
if rand1 < 0 and rand2 < 0:
break
return list(genes_choose[index1]), list(genes_choose[index2])
def ga_mutate(self, gene):
path_list = [t for t in range(len(gene))]
order = list(random.sample(path_list, 2))
start, end = min(order), max(order)
tmp = gene[start:end]
# np.random.shuffle(tmp)
tmp = tmp[::-1]
gene[start:end] = tmp
return list(gene)
def ga(self):
# 获得优质父代
scores = self.compute_adp(self.fruits)
# 选择部分优秀个体作为父代候选集合
parents, parents_score = self.ga_parent(scores, self.ga_choose_ratio)
tmp_best_one = parents[0]
tmp_best_score = parents_score[0]
# 新的种群fruits
fruits = parents.copy()
# 生成新的种群
while len(fruits) < self.num_total:
# 轮盘赌方式对父代进行选择
gene_x, gene_y = self.ga_choose(parents_score, parents)
# 交叉
gene_x_new, gene_y_new = self.ga_cross(gene_x, gene_y)
# 变异
if np.random.rand() < self.mutate_ratio:
gene_x_new = self.ga_mutate(gene_x_new)
if np.random.rand() < self.mutate_ratio:
gene_y_new = self.ga_mutate(gene_y_new)
x_adp = 1. / self.compute_pathlen(gene_x_new, self.dis_mat)
y_adp = 1. / self.compute_pathlen(gene_y_new, self.dis_mat)
# 将适应度高的放入种群中
if x_adp > y_adp and
- 1
- 2
前往页