没有合适的资源?快使用搜索试试~ 我知道了~
云计算-基于双目立体视觉的客流统计算法研究.pdf
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 6 浏览量
2022-07-01
23:45:25
上传
评论
收藏 2.37MB PDF 举报
温馨提示
【摘要】中提到的研究主要集中在基于双目立体视觉的客流统计算法,这是现代智能交通系统发展中的一个重要方向。随着城市公交系统日益重要,解决如线路规划、调度优化等问题变得紧迫。利用图像处理技术,尤其是立体视觉技术,可以提供更准确、实时的客流数据,从而改善公交服务和管理。 立体匹配技术是此研究的核心,它涉及到多种匹配算法的分析。动态规划算法被选为最佳选择,因为它在保证实时性的同时提供了更平滑的视差图,这对于精确地识别和跟踪运动目标至关重要。论文中还介绍了背景差分模型与光流残差的结合,用于检测和分割运动目标,关联领域标记则用于定位目标。此外,多特征融合跟踪算法经过改进后,提高了对运动目标跟踪计数的准确性。 该研究在SBC3730平台上构建了一个客流量统计系统,并将所提出的算法实施于该平台,测试结果显示系统的跟踪计数性能在准确性和实时性方面表现出色。关键词包括视频人数统计、双目立体视觉、立体匹配、光流残差以及OpenCV,表明了研究的技术基础和应用工具。 这篇论文深入探讨了基于双目立体视觉的客流统计技术,通过立体匹配、运动目标检测、分割、跟踪和计数等步骤,实现了高精度和实时的客流信息获取。这一技术对于优化公交线路、站点分布,提升公共交通效率,以及在大数据时代创造经济和社会效益具有重要意义。通过实际平台的验证,证明了所提算法的有效性和实用性。
资源推荐
资源详情
资源评论
摘 要
I
摘 要
公交车各方面的优势使它被广大市民接受,成为了城市中出行交通工具的首
选。可是目前的公共交通存在着许多急需解决的问题,例如:城市中线路规划不
合理,早晚高峰期间调度不科学,一条线路中站点安排过于紧凑或过于稀疏,车
流量大时容易发生剐蹭事故等等。现代化智能交通系统的发展对于解决这些公交
车存在的问题有很重要的现实意义。在这个比较发达的交通系统中,如何能够得
到准确性、实时性高的客流信息就显得尤为重要。有了这些准确和实时的客流信
息就能够更加科学的对线路里的公交车进行调度,还能帮助公交车公司更加合理
的安排线路和站点。另外,这些准确和实时的客流信息还能够在大数据时代产生
特殊经济、社会效益。
目前我们越来越能够达成这样的共识:由于图像中蕴含着巨大的信息量,所
以利用图像处理技术来对公共交通系统中的客流量进行统计已经成为了一个非
常重要的发展方向。一维的单目视觉和多维的或二维的双目视觉技术是图像处理
统计客流中两个分支。由于使用单目视觉技术进行处理时比较容易受到色彩光照
强度变化、遮挡等因素的影响,所以目前使用立体视觉进行图像处理应用的较为
广泛。本论文就是利用立体视觉技术设计了客流量信息统计的算法,最后利用
SBC3730 平台实现这种算法。
本论文首先详细阐述了立体匹配技术,并对几种匹配算法进行了分析,结合
实时性和准确度的要求选取了动态规划算法来获得视差图。这种能够对全局进行
处理的方法得到的致密视差图要比其他方法获取到的视差图更为平滑。接着本论
文利用背景差分模型与光流残差相结合的方法检测运动目标,然后进行分割,对
运动状态下目标的定位提取使用了相关联领域标记。本论文使用了多特征融合跟
踪算法进行对目标的跟踪计数,并对这种算法做出了相应的改进。这种改进后的
算法在对运动状态的目标进行跟踪计数时能够做到更为准确。最后本论文使用了
SBC3730 平台搭建对客流量的状态进行统计的系统,将本论文的算法移植到该
系统上进行测试,最后的结论说明这个系统在跟踪计数运动的目标方面准确性和
实时性都比较高。
关键词:视频人数统计;双目立体视觉;立体匹配;光流残差;OpenCV
万方数据
Abstract
II
Abstract
Because of advantage of the bus, it has been accepted by the general public and
as the preferred means of transport to travel the city. But now there are many public
transport problems needed to be solved urgently, such as unreasonable urban route
planning, unscientific dispatch during the morning and evening peak, impertinent
station distribution of sparse or tightness, frequent traffic rub accidents in flow traffic
etc, so development of modern intelligent transportation systems for solving the
problems of these buses has a very important practical significance. In the scientific
comparatively transportation system, how to get high accuracy and real-time traffic
information is particularly important. With accurate and real-time passenger
information, not only scheduling the line bus can be more scientific, but also helping
the bus company to make a more reasonable arrangement about lines and sites. In
addition, these accurate and real-time traffic information can also create special
economic and social benefits in the era of big data.
Currently we are increasingly able to reach this consensus: Since the image
contains a huge amount of information, the use of image processing techniques to
count traffic statistics in the real-time public transport system has become a important
development direction. One-dimensional monocular vision and multi-dimensional or
two-dimensional binocular vision are two branches of passenger statistics which are
based the image processing technology .In consequence monocular vision technology
for processing image is easy to be affected by the intensity changes of color light and
cover and other factors, now we use extensively stereoscopic technology to make
image processing. This study utilizes stereo vision technology to design algorithm of
getting the transit passenger flow information. Finally the algorithm is achieved on
SBC3730 platforms.
This research firstly elaborates stereo matching technique, and analyzes several
matching algorithms, and selects dynamic programming algorithm to obtain the
disparity map according to the real-time and accurate requirements. The dense
disparity map which is obtained by the method of processing globally is smoother
than the other methods Then this research use the way which combining background
subtraction model and optical flow residual to detect moving objects, and segment the
target, and use the associated field marks to locate and extract target in moving state.
Multi-feature fusion tracking algorithm is applied for target tracking count in this
万方数据
Abstract
III
paper, and this algorithm is made appropriate improvements. The improved algorithm
can do a more accurate count when it tracks the target of motion state. Finally, this
research builds the accounting system for state of passenger flow through build the
SBC3730 platform. The algorithm in the paper is ported to the system and tested. The
final conclusion illustrate that the accuracy and real-time of the system is relatively
high in tracking and counting moving target aspects.
KEY WORDS:modern intelligent transportation systems, binocular stereo
vision , stereo matching,optical flow residual, OpenCV
万方数据
目 录
IV
目 录
摘 要 ......................................................................................................... I
Abstract ...................................................................................................... II
目 录 ...................................................................................................... IV
1 绪论 ......................................................................................................... 1
1.1 课题研究背景和意义..................................................................................... 1
1.2 国内外研究现状............................................................................................. 2
1.2.1 概述 ...................................................................................................................... 2
1.2.2 客流统计研究现状 .............................................................................................. 3
1.3 论文的结构..................................................................................................... 4
2 双目立体视觉系统的相关算法研究 .................................................... 5
2.1 引言................................................................................................................. 5
2.2 双目立体匹配的实现..................................................................................... 6
2.2.1 认识立体匹配的匹配过程 ................................................................................... 7
2.2.2 双目立体匹配的具体实现 ................................................................................... 8
2.3 本课题中立体匹配的实现........................................................................... 13
2.3.1 动态规划算法 .................................................................................................... 13
2.3.2 双目立体匹配方法 ............................................................................................ 14
2.3.3 算法测试 ............................................................................................................ 18
2.4 本章小结....................................................................................................... 20
3 目标提取技术研究与实现 .................................................................. 21
3.1 目标提取技术概述....................................................................................... 21
3.2 实现目标检测的方法................................................................................... 21
3.2.1 概述 .................................................................................................................... 21
3.2.2 实现背景建模 .................................................................................................... 24
3.3 目标分割常用算法....................................................................................... 26
3.4 目标定位常用算法....................................................................................... 27
3.5 实现提取运动目标的过程........................................................................... 27
3.5.1 选取目标检测的方法......................................................................................... 27
3.5.2 实验结果与分析 ................................................................................................ 29
3.6 本章小结....................................................................................................... 33
万方数据
目 录
V
4 目标跟踪技术研究与实现 .................................................................. 35
4.1 目标跟踪....................................................................................................... 35
4.2 多运动目标跟踪........................................................................................... 37
4.2.1 多运动目标跟踪的实现过程 .............................................................................. 37
4.2.2 实验结果分析 ..................................................................................................... 40
4.3 计数实现....................................................................................................... 41
4.4 本章小结....................................................................................................... 43
5 基于 OpenCV 实现双目视觉下的客流计数算法 .............................. 44
5.1 OpenCV 简介 ................................................................................................ 44
5.2 算法的实现过程........................................................................................... 44
5.2.1 运动目标检测 .................................................................................................... 44
5.2.2 运动目标分割和跟踪......................................................................................... 48
5.2.3 运动目标的计数 ................................................................................................ 49
5.3 发采用的硬件设备与系统平台................................................................... 50
5.4 实验结果....................................................................................................... 50
6 总结和展望........................................................................................... 53
6.1 总结............................................................................................................... 53
6.2 展望............................................................................................................... 54
参考文献 ................................................................................................... 55
致谢 ........................................................................................................... 58
个人简历、研究生期间的收获 .............................................................. 59
万方数据
剩余63页未读,继续阅读
资源评论
programxh
- 粉丝: 17
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功