没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
III
Abstract
Futures is a kind of financial derivatives with high liquidity and standardized
management. With the development of China's commodity futures market,
investors began to use all kinds of investment strategies to invest. The use of these
strategies has created benefits for investors and is also conducive to promoting the
development of the market. With machine learning, data mining and other
algorithms gradually applied in stock, commodity futures and other markets, how
to use data mining model to build a more accurate strategy is the concern of
investors and investment institutions. In the research and application of arbitrage
trading strategy, mean regression is a classical model, but the mean regression
trading frequency is less and the return is lower. Neural network is also used in the
study of arbitrage strategy. At present, BP neural network and elm neural network
are mainly used. However, in practical application, there are many parameters of
this kind of neural network, which is prone to over fitting, leading to unstable
performance. GMDH self-organizing network has the characteristics of good
prediction performance and strong stability, and has been widely used in price
prediction and other fields. Therefore, based on the structure principle of GMDH
network and particle swarm optimization algorithm, this paper further optimizes
the structure and parameters of GMDH neural network, and uses the network
model to construct cross species arbitrage strategy, and at the same time, it carries
out empirical research on the combination of oil products. The research in this
paper provides certain theoretical and practical basis for cross species arbitrage.
This paper mainly focuses on palm oil, rapeseed oil and soybean oil futures,
and designs arbitrage trading strategies for these three kinds of oil futures, and
carries out empirical verification. First of all, this paper studies the theory of cross
species arbitrage and various data mining models and methods. Secondly, through
the research on the fundamentals of the above three kinds of futures, it is proved
that there is an internal relationship between the three kinds of oil, so it has the
万方数据
IV
internal basis and logic to design arbitrage trading strategy. Thirdly, this paper
makes a co integration analysis of these three kinds of oil varieties from the data
layer, and further studies the long-term equilibrium relationship among these three
kinds of oil varieties. Fourth, this paper uses the mean arbitrage model to test the
three kinds of trading. From the test, we can see that the traditional mean
regression model has poor performance, there are problems of trading frequency
rate and low return. Fourthly, this paper improves the GMDH neural network
model, optimizes GMDH from the aspects of sample division method, external
criteria, intermediate model, and constructs the trading strategy based on the
optimized GMDH neural network. Fifthly, this paper collects data, makes an
empirical analysis on the trading strategy of the improved GMDH neural network
model, and verifies the effectiveness of the improved GMDH model by comparing
with the improved GMDH neural network model and BP neural network model.
After research, the following conclusions are obtained: (1) from the results of
fundamentals, correlation analysis and co integration analysis, there is a long-term
co integration relationship between palm oil, vegetable oil and soybean oil futures,
which has the basis of arbitrage trading; (2) from the prediction results of the
improved GMDH neural network model on price difference, the optimized GMDH
has a good fitting effect on the profit, and at the same time, By comparing the
prediction results in and out of the sample, we can see that the prediction out of the
sample keeps stable, which shows that the optimized GMDH model can avoid the
occurrence of over fitting problem to a certain extent; (3) the trading strategy
based on the neural network model to predict the price difference and build,
increases the frequency of trading, and filters the trading signal by introducing the
threshold value, The stability of the measurement is further improved. From the
back test results of trading strategy based on neural network model, the optimized
GMDH neural network model has certain advantages in the overall performance of
the strategy.
万方数据
V
The research of this paper has a certain reference value for expanding the
design idea of cross breed arbitrage trading and improving the performance of
cross breed trading strategy.
Keywords: oil futures; GMDH model optimization; arbitrage strategy; PSO
optimization
万方数据
VI
目 录
摘要
...............................................................................................................................................................
I
ABSTRACT
....................................................................................................................................................
III
第 1 章 绪论
................................................................................................................................................
1
1.1 研究的背景
.......................................................................................................................................
1
1.2 研究目的和意义
...............................................................................................................................
2
1.2.1 研究目的
.................................................................................................................................
2
1.2.2 研究意义
.................................................................................................................................
2
1.3 研究内容、研究方法和技术路线
..................................................................................................
3
1.3.1 研究内容
.................................................................................................................................
3
1.3.2 研究方法
.................................................................................................................................
4
1.3.3 技术路线
.................................................................................................................................
4
1.4 本文主要特点
...................................................................................................................................
5
第 2 章 相关理论回顾与文献综述
............................................................................................................
6
2.1 相关理论回顾
...................................................................................................................................
6
2.1.1 跨品种套利理论
.....................................................................................................................
6
2.1.2 BP 神经网络
.............................................................................................................................
8
2.1.3 粒子群优化算法
...................................................................................................................
10
2.1.4 GMDH 神经网络
....................................................................................................................
12
2.2 相关文献综述
................................................................................................................................
18
2.2.1 交易策略研究
.......................................................................................................................
18
2.2.2 机器学习交易策略研究
.......................................................................................................
20
2.2.3 文献述评
...............................................................................................................................
21
第 3 章 油脂类期货套利均值回归套利及存在问题分析
......................................................................
23
3.1 油脂类期货套利问题的提出
........................................................................................................
23
3.2 油脂类交易标的基础分析
............................................................................................................
23
3.2.1 豆油期货基础分析
...............................................................................................................
23
3.2.2 菜油期货基础分析
...............................................................................................................
26
3.2.3 棕榈油期货基础分析
...........................................................................................................
27
3.3 油脂类期货相关性与协整分析
....................................................................................................
29
3.3.1 数据说明与统计分析
...........................................................................................................
29
3.3.2 油脂类期货价格相关性分析
...............................................................................................
30
万方数据
VII
3.3.3 协整检验
...............................................................................................................................
31
3.4 油脂期货均值回归套利及存在的问题分析
................................................................................
33
3.4.1 构建套利头寸
.......................................................................................................................
33
3.4.2 保证金手续费计算
...............................................................................................................
34
3.4.3 均值回归策略及回测结果
...................................................................................................
34
3.4.4 均值回归存在问题分析
.......................................................................................................
37
第 4 章 基于优化的 GMDH 神经网络的交易策略的设计方案
.............................................................
39
4.1 基于神经网络的交易策略设计的思路
.........................................................................................
39
4.2 基于优化 GMDH 模型的网络构建
...............................................................................................
40
4.2.1 优化原理
...............................................................................................................................
40
4.2.2 优化过程
...............................................................................................................................
40
4.3 配对价格预测
................................................................................................................................
43
4.4 套利信号和交易策略
.....................................................................................................................
45
第 5 章 交易策略回测
..............................................................................................................................
47
5.1 套利策略有效评价指标
................................................................................................................
47
5.2 基于优化 GMDH 套利交易的回测结果
.......................................................................................
48
5.3 基于不同神经网络模型套利交易的对比
....................................................................................
51
5.3.1 GMDH 神经网络套利策略
....................................................................................................
52
5.3.2 BP 神经网络套利策略
...........................................................................................................
53
5.4 交易策略方案的有效性评价
........................................................................................................
55
5.5 交易策略方案的风险提示
............................................................................................................
56
第 6 章 研究结论与展望
..........................................................................................................................
58
6.1 研究结论
.........................................................................................................................................
58
6.2 研究的不足与展望
.........................................................................................................................
59
参考文献
....................................................................................................................................................
60
致谢
............................................................................................................................................................
63
附录
............................................................................................................................................................
64
万方数据
剩余88页未读,继续阅读
资源评论
programcx
- 粉丝: 44
- 资源: 13万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Pytorch+YOLOv5+SlowFast实现的视频流实时动作检测算法-支持多目标的跟踪检测源码
- Halcon仿射变换详解
- 局部遮阴下光伏MPPT-粒子群算法,仿真模型
- GD32H7xx pack包
- Midjourney 常用参数列表
- 光伏MPPT仿真-电导增量法,仿真模型,可替自建光伏电池,有Video explanation(原创)
- Linux应用开发实训:基于51单片机的智能大棚管理系统设计与实现
- 福昕Foxit PDF语言包OCR-Lang-Chinese
- 3 Halcon基础之形态学算子
- 20230925-Halcon的3D点云筛选与切割过程详解
- 2024年大模型轻量化技术研究报告.pdf
- 电磁无损检测中扫频与脉冲涡流探伤的理论及实验研究(多层结构缺陷表征)
- 特征稀疏主子空间学习:低秩协方差矩阵全局优化算法与一般情况迭代求解的研究
- 脉冲调制涡流检测中漏斗形探头对导体内部缺陷敏感度增强的研究
- 7 【Halcon深度学习】水果分拣系统实战
- 美食点餐系-JAVA-基于微信美食点餐系统小程序的设计与实现(毕业论文)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功