# Flask REST API
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
## Requirements
[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
```shell
$ pip install Flask
```
## Run
After Flask installation run:
```shell
$ python3 restapi.py --port 5000
```
Then use [curl](https://curl.se/) to perform a request:
```shell
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'`
```
The model inference results are returned as a JSON response:
```json
[
{
"class": 0,
"confidence": 0.8900438547,
"height": 0.9318675399,
"name": "person",
"width": 0.3264600933,
"xcenter": 0.7438579798,
"ycenter": 0.5207948685
},
{
"class": 0,
"confidence": 0.8440024257,
"height": 0.7155083418,
"name": "person",
"width": 0.6546785235,
"xcenter": 0.427829951,
"ycenter": 0.6334488392
},
{
"class": 27,
"confidence": 0.3771208823,
"height": 0.3902671337,
"name": "tie",
"width": 0.0696444362,
"xcenter": 0.3675483763,
"ycenter": 0.7991207838
},
{
"class": 27,
"confidence": 0.3527112305,
"height": 0.1540903747,
"name": "tie",
"width": 0.0336618312,
"xcenter": 0.7814827561,
"ycenter": 0.5065554976
}
]
```
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5进行水域游泳者检测系统.zip (1876个子文件)
events.out.tfevents.1622345317.b56b89382d6f.544.0 750KB
events.out.tfevents.1622348409.b56b89382d6f.776.0 745KB
events.out.tfevents.1622347943.b56b89382d6f.682.0 694KB
events.out.tfevents.1622343384.b56b89382d6f.158.0 689KB
events.out.tfevents.1622450972.fc846bd6f9e4.353.0 688KB
events.out.tfevents.1622450126.fc846bd6f9e4.246.0 681KB
events.out.tfevents.1622343372.b56b89382d6f.148.0 40B
train2017.cache 43KB
Dockerfile 2KB
Dockerfile 846B
.dockerignore 4KB
.DS_Store 8KB
.DS_Store 8KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
tutorial.ipynb 386KB
image_test_002.jpeg 129KB
image_test_002-checkpoint.jpeg 129KB
image_test_003.jpeg 119KB
image_test_003-checkpoint.jpeg 119KB
img_110.jpg 1.32MB
img_110.jpg 1.32MB
img_109.jpg 1.16MB
img_109.jpg 1.16MB
img_111.jpg 1.06MB
img_111.jpg 1.06MB
img_113.jpg 1.06MB
img_113.jpg 1.06MB
img_117.jpg 1MB
img_117.jpg 1MB
img_106.jpg 960KB
img_106.jpg 960KB
img_067.jpg 931KB
img_067.jpg 931KB
img_080.jpg 667KB
img_080.jpg 667KB
img_116.jpg 606KB
img_116.jpg 606KB
000000000575.jpg 530KB
img_115.jpg 518KB
img_115.jpg 518KB
labels.jpg 506KB
labels.jpg 506KB
bus.jpg 483KB
bus-checkpoint.jpg 483KB
bus.jpg 476KB
img_114.jpg 470KB
img_114.jpg 470KB
labels.jpg 454KB
image_258.jpg 423KB
labels_correlogram.jpg 423KB
labels_correlogram.jpg 423KB
labels_correlogram.jpg 412KB
000000000034.jpg 397KB
000000000061.jpg 391KB
train_batch2.jpg 389KB
000000000073.jpg 375KB
000000000151.jpg 374KB
img_088.jpg 372KB
img_088.jpg 372KB
labels.jpg 367KB
labels.jpg 367KB
train_batch0.jpg 354KB
train_batch2.jpg 349KB
train_batch2.jpg 349KB
train_batch1.jpg 349KB
train_batch1.jpg 349KB
train_batch1.jpg 344KB
000000000368.jpg 341KB
labels_correlogram.jpg 341KB
train_batch0.jpg 339KB
train_batch0.jpg 339KB
test_batch2_pred.jpg 331KB
test_batch2_pred-checkpoint.jpg 331KB
test_batch2_labels.jpg 331KB
test_batch2_labels-checkpoint.jpg 331KB
000000000309.jpg 330KB
000000000397.jpg 313KB
000000000605.jpg 311KB
test_batch2_pred.jpg 309KB
test_batch2_pred-checkpoint.jpg 309KB
labels.jpg 308KB
test_batch2_labels.jpg 303KB
test_batch2_labels.jpg 303KB
test_batch2_pred.jpg 296KB
test_batch2_pred-checkpoint.jpg 296KB
000000000312.jpg 293KB
labels_correlogram.jpg 292KB
labels_correlogram.jpg 292KB
000000000307.jpg 292KB
test_batch1_pred.jpg 292KB
img_112.jpg 288KB
img_112.jpg 288KB
000000000502.jpg 287KB
000000000629.jpg 286KB
img_087.jpg 281KB
共 1876 条
- 1
- 2
- 3
- 4
- 5
- 6
- 19
资源评论
- tiebiao0992024-01-11感谢资源主的分享,很值得参考学习,资源价值较高,支持!
omyligaga
- 粉丝: 87
- 资源: 2万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功