# SonoNERF
We introduce SonoNERFs, a novel approach that adapts Neural Radiance Fields (NeRFs) to model and understand the echolocation process in bats, focusing on the challenges posed by acoustic data interpretation without phase information. Leveraging insights from the field of optical NeRFs, our model, termed SonoNERF, represents the acoustic environment through Neural Reflectivity Fields. This model allows us to reconstruct three-dimensional scenes from echolocation data, obtained by simulating how bats perceive their surroundings through sound. By integrating concepts from biological echolocation and modern computational models, we demonstrate the SonoNERF’s ability to predict echo spectrograms for unseen echolocation poses and effectively reconstruct a mesh-based and energy-based representation of complex scenes. Our work bridges a gap in understanding biological echolocation and proposes a methodological framework that provides a first order model on how scene understanding might arise in echolocating animals. We demonstrate the efficacy of the SonoNERF model on three scenes of increasing complexity, including some biologically relevant prey-predator interactions.
This repository contains the Matlab source code to create the SonoNERF model and evaluate it based on simulation data.
Paper: https://www.mdpi.com/2313-7673/9/6/321
## Publication
We kindly ask to cite our paper if you find this codebase usefull:
```
@article {SonoNERF2024,
author = {Jansen, Wouter and Steckel, Jan},
title = {SonoNERFs: Neural Radiance Fields Applied to Biological Echolocation Systems Allow 3D Scene Reconstruction through Perceptual Prediction},
journal = {Biomimetics},
volume = {9},
year = {2024},
URL = {https://www.mdpi.com/2313-7673/9/6/321},
issn = {2313-7673}
doi = {10.3390/biomimetics9060321}
}
```
## Usage
### Dependencies
- Matlab 2024a or higher
- [SonoTraceLab](https://github.com/Cosys-Lab/SonoTraceLab) and its dependencies
- Parallel Computing Toolbox
- Signal Processing Toolbox
- Deep Learning Toolbox
- Image Processing Toolbox
- Phased Array System Toolbox
- Lidar Toolbox
### Code
The underlying source code is provided as well as five scripts to run each step of the process as shown in the paper.
- r1_generateDatasetSonoNERF.m: Generate the simulation data using [SonoTraceLab](https://github.com/Cosys-Lab/SonoTraceLab) based on a scenario 3D model.
- r2_convertDataSetNERF_STFT.m: Convert the simulation data by calculating the STFT of all the measurements and saving it in a datastore format ready for training.
- r3_trainSonoNERF.m: Using the datastore and the bat HRTF, train the NERF network and create the model.
- r4_evaluateSonoNERF.m: Evaluate the trained model and run inference a display the predicted spectrograms and the maximum intensity projection of the reconstruction.
- r5_makeSonoNerfResultPlot.m: Evaluate the trained model and run inference and display the 3d scene of the scenario and the predicted measurement locations, the predicted spectograms and the original ground truth. and the reconstructed isosurface of the reconstruction.
### Data
As the bat HRTF and 3D head model used in the paper are proprietary, a generic bat HRTF and 3d model is provided within the dataset. Three scenarios used in the paper are provided: the UA logo, the dragonfly on the leaf, and the three spheres. These STL 3D models can be found in the dataset. For each of them the simulated data (generated with the first script) comes already pre-generated.
## License
This library is provided as is, will not be actively updated and comes without warranty or support.
Please contact a Cosys-Lab researcher to get more in depth information or if you wish to collaborate.
SonoNERF is open source under the MIT license, see the [LICENSE](LICENSE) file.
## Open-Source libraries included in this project
- Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox by Paul Leopardi for the University of New South Wales [(link)](https://github.com/penguian/eq_sphere_partitions)
- Progress bar by HyunGwang Cho [(link)](https://www.mathworks.com/matlabcentral/fileexchange/121363-progress-bar-cli-gui-parfor?s_tid=srchtitle)
matlab科研助手
- 粉丝: 3w+
- 资源: 5991
最新资源
- 影刀RPA高级操作二.txt
- cadance 1.8v LDO电路 cadance virtuoso 设计 模拟电路设计 LDO带隙基准电路设计 带设计报告(14页word) 基于tsmc18工艺 模拟ic设计 bandgap+L
- 椭圆拟合方法用于电子衍射花样的快速精确分析
- 基于java的影城管理系统设计新版源码+数据库+说明
- 基于java的幼儿园管理系统设计新版源码+数据库+说明
- 文明6mod发布:华夏历史的政策拓展包(中央集权、军功爵制、穷兵黩武)
- comsol仿真 PEM电解槽三维两相流模拟,包括电化学,两相流传质,析氢析氧,化学反应热等多物理场耦合,软件comsol,可分析多孔介质传质,析氢析氧过程对电解槽电流密度分布,氢气体积分数,氧气
- 《Internet程序开发基础》课程大作业
- Android studio 健康管理系统期末大作业App源码
- 基于java的准妈妈孕期交流平台设计新版源码+数据库+说明
- 基于java的自习室预订系统设计新版源码+数据库+说明
- 基于java的租房网站设计新版源码+数据库+说明
- yolo条形码&二维码检测数据集
- 使用Python与梯度回归树及夏普利方法进行社会调查数据分析及模型训练(含代码及解释)
- ISSA多策略改进麻雀优化ISSA-CNN-BiLSTM 多输入单输出回归 python代码 优化参数:filter,unints1,units2,学习率(可添加) 以下是三个主要的改进点: sin混
- 油棕种植生态指标的探索性评估:环境可持续性的方法与挑战
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈