"""
Reservoir Computing Code
Reservoir Computer as a Controller for Selective Inhibition
@author: michaelmccreesh
"""
## Import Modules
import numpy as np
import scipy as sp
import scipy.linalg as splin
import scipy.io as spio
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
class Reservoir(object):
# Generate internal reservoir matrices and the additive constant
def __init__(self,N,n):
J_init = 4*np.random.rand(N*n,N*n) - 2
# Normalize reservoir
scale = np.linalg.norm(splin.eigh(J_init, eigvals_only = True, subset_by_index=[n, n]))
self.J = 0.25 * (J_init / scale)
self.Jy = 2*(np.random.rand(N*n,n)-0.5)
self.Jr = 2*(np.random.rand(N*n,n)-0.5)
self.Jrdot = 2*(np.random.rand(N*n,n)-0.5)
self.d = 0.1
# Only use if rest of code is set up to accomodate
class Deep_Reservoir(object):
def __init__(self,N,n,num_layers):
J_init = 4*np.random.rand(N*n,N*n,num_layers) - 2
# Normalize reservoir
scale = np.linalg.norm(splin.eigh(J_init, subset_by_index=[n, n]))*1.05
self.J = J_init / scale
self.Jy = 2*(np.random.rand(N*n,n,num_layers)-0.5)
self.Jr = 2*(np.random.rand(N*n,n,num_layers)-0.5)
self.Jrdot = 2*(np.random.rand(N*n,n,num_layers)-0.5)
class RC_Controller(object):
def __init__(self,W,res,m,dt,Tau_net,Tau_res,delta):
self.W = W
self.res = res
self.m = m # Threshold
self.dt = dt # Timestep
self.Tau_net = Tau_net # network timescale
self.Tau_res = Tau_res # reservoir timescale
self.delta = delta # Steps ahead to look for tracking
self.x = np.ones((np.size(W,axis=0),1))*m # Current reservoir state
self.X = np.ones((np.size(res.J,axis=0),1))*m
self.u = np.ones((np.size(W,axis=0),1)) # Current control value
#### Learning Phase
def train(self,v):
x_driven = np.zeros((np.size(v,0),np.size(v,1)))
X_driven = np.zeros((np.size(self.res.J,0),np.size(v,1)))
# Propagate the network with the training signal
for i in range(0,np.size(v,1)):
self.propagate_system(v[:,i,None])
x_driven[:,i,None] = self.x
for i in range(0,np.size(v,1)-self.delta):
xdelta = x_driven[:,i+self.delta]
x_deriv = (xdelta - x_driven[:,i])/(self.delta*self.dt)
self.propagate_reservoir(xdelta, x_deriv)
X_driven[:,i,None] = self.X
return X_driven, x_driven
# Integrators for Learning Phase
def propagate_system(self,u):
k1 = self.LTN_sys(self.x,u)
k2 = self.LTN_sys(self.x+k1/2,u)
k3 = self.LTN_sys(self.x+k2/2,u)
k4 = self.LTN_sys(self.x+k3,u)
self.x = self.x + (k1 + 2*k2 + 2*k3 + k4)/6
return
def LTN_sys(self,x,u):
val = self.W @ x + u
val[val <= 0] = 0
val[val > self.m] = self.m
return self.Tau_net @ (-x + val)
def propagate_reservoir(self,xdelta,x_deriv):
k1 = self.LTN_reservoir(self.X,self.x,xdelta,x_deriv)
k2 = self.LTN_reservoir(self.X+k1/2,self.x,xdelta,x_deriv)
k3 = self.LTN_reservoir(self.X+k2/2,self.x,xdelta,x_deriv)
k4 = self.LTN_reservoir(self.X+k3,self.x,xdelta,x_deriv)
self.X = self.X + (k1 + 2*k2 + 2*k3 + k4)/6
return
def LTN_reservoir(self,X,x,xdelta,x_deriv):
val = self.res.J @ X + self.res.Jy @ x + (self.res.Jr @ xdelta).reshape(-1,1) + (self.res.Jrdot @ x_deriv).reshape(-1,1) + self.res.d
val[val <= 0] = 0
val[val > self.m] = self.m
return self.Tau_res * (-X + val)
#### Control Phase
def control_system(self,J_out,u0,T):
times = np.arange(0,T,self.dt)
sys_traject = np.zeros((np.size(u0),np.size(times)))
control_vals = np.zeros((np.size(u0),np.size(times)))
self.x = np.ones((np.size(W,axis=0),1))*m/2 # Current reservoir state
self.X = np.ones((np.size(res.J,axis=0),1))*m/2
counter = 0
for i in times:
self.propagate_system(self.u)
self.propagate_reservoir_control(i)
if i < 25:
self.u = 0.5*u0 # Don't immediately apply reservoir controller
else:
self.u = J_out @ self.X
sys_traject[:,counter,None] = self.x
control_vals[:,counter ,None] = self.u
counter += 1
return times, sys_traject, control_vals
## Reservoir RK Integrators for Control
def propagate_reservoir_control(self,t):
k1 = self.LTN_reservoir_control(self.X,t)
k2 = self.LTN_reservoir_control(self.X+k1/2,t)
k3 = self.LTN_reservoir_control(self.X+k2/2,t)
k4 = self.LTN_reservoir_control(self.X+k3,t)
self.X = self.X + (k1 + 2*k2 + 2*k3 + k4)/6
return
def LTN_reservoir_control(self,X,t):
val = self.res.J @ X + self.res.Jy @ self.x + self.res.Jr @ reference(t+self.delta*self.dt) + self.res.Jrdot @ reference_deriv(t) + self.res.d
val[val <= 0] = 0
val[val > self.m] = self.m
return self.Tau_res * (-X + val)
#### Main Code
## RC Parameters
m = 10 # threshold
dt = 0.02 # time step
Tau_res = 1.4 # reservoir time constant
delta = 1 # Number of steps ahead to look in reference tracking
# Times and samples for training
T_l = 1000 # learning phase
T_t = 100 # transient phase
T_p = 1000 # prediction phase
n_train = int(T_l/dt)
n_trans = int(T_t/dt)
n_pred = int(T_p/dt)
## Will need something for indices for training time but come back to ##
n_samples = n_trans + n_train + n_pred
## Network for tracking
W = np.array([[0.0112, -0.9903],[0.4101, -0.5115]])
tau_net = 1/4*np.identity(2)
## Generate Reservoir
N = 50 # scaling of reservoir from network size
n = np.size(W,0) # Size of network
num_layers = 1 # Number of layers if deep RC
res = Reservoir(N,n)
## Import MATLAB reservoir and data (used for testing)
mat = spio.loadmat('data.mat', squeeze_me = True)
res.J = mat['J']
res.Jy = mat['Jy']
res.Jr = mat['Jr']
res.Jrdot = mat['Jrdot']
v_mat = mat['v']
x_driven_mat = mat['x_driven']
X_driven_mat = mat['X_driven']
vT_mat = mat['vT']
X_drivenT_mat = mat['X_drivenT']
J_out_mat = mat['J_out']
## Create the Reservoir Controller (Object)
R = RC_Controller(W,res,m,dt,tau_net,Tau_res,delta)
## Generate Training Data
# This could be done in almost any way. Here is an arbitrarily constructed one
# that was found to work. Different training data can change prediction
# performance
idx = np.arange(0,n_samples+1,1,dtype=int)
scaling = np.sin(2*idx/1000)
v = scaling*np.array([3*np.ones((n_samples+delta)),-2*np.ones((n_samples+delta))])
## Train the Reservoir Controller
X_driven, x_driven = R.train(v)
# Discard start of data
vT = v[:,(n_train+n_trans):]
X_drivenT = X_driven[:,(n_train+n_trans):]
def compute_output_vector(X_driven,vT,beta):
J_out_transpose = tikhonov_reg(np.transpose(X_driven),np.transpose(vT),beta)
return np.transpose(J_out_transpose)
#Tikhonov Regularization
def tikhonov_reg(A,b,beta):
U,S,Vt = np.linalg.svd(A,full_matrices = False)
V = Vt.T
true_s = np.zeros((U.shape[1], V.shape[0]))
true_s[:S.size, :S.size] = np.diag(S)
btilde = U.T @ b
Shold = true_s.T @ true_s
hold2 = Shold + (beta**2)*np.identity(np.shape(true_s)[0])
Xtilde = np.linalg.inv(hold2) @ (np.diag(S.T) @ btilde)
X = V @ Xtilde
return X
beta = 0.5
J_out = compute_output_vector(X_drivenT, vT, beta)
## Define Reference Signal
def reference(t):
r1 = np.sin(2*np.pi*t/200)+2
r2 = 0
return np.array([[r1],[r2]])
def reference_deriv(t):
r1_deriv = np.cos(2*np.pi*t/200)*2*np.pi/200
r2_deriv = 0
return np.array([[r1_deriv],[r2_deriv]])
# Dimensions must match the network size
## Track the Reference Signal
u0 = np.array([[2],[2]])
T = 750
times, sys_
没有合适的资源?快使用搜索试试~ 我知道了~
储层计算及下一代储层计算控制matlab代码.zip
共11个文件
m:8个
py:2个
mat:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 157 浏览量
2024-06-10
08:44:57
上传
评论
收藏 58KB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
储层计算及下一代储层计算控制matlab代码.zip (11个子文件)
储层计算及下一代储层计算控制matlab代码
ReservoirComputing-main
tikhonov_reg.m 265B
NG-RC
tikhonov_reg.m 265B
NGRC.py 5KB
NextGen_ReservoirController.m 5KB
NGRC_sample.m 2KB
NGRC_Tracking.m 6KB
data.mat 38KB
RC
RC.py 8KB
ReservoirControllerTracking.m 7KB
RC_sample.m 3KB
reservoir_generation.m 1KB
共 11 条
- 1
资源评论
matlab科研助手
- 粉丝: 3w+
- 资源: 5951
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功