# VLFeat -- Vision Lab Features Library
> Version 0.9.20
The VLFeat open source library implements popular computer vision
algorithms specialising in image understanding and local featurexs
extraction and matching. Algorithms incldue Fisher Vector, VLAD,
SIFT, MSER, k-means, hierarchical k-means, agglomerative information
bottleneck, SLIC superpixes, quick shift superpixels, large scale SVM
training, and many others. It is written in C for efficiency and
compatibility, with interfaces in MATLAB for ease of use, and detailed
documentation throughout. It supports Windows, Mac OS X, and Linux.
VLFeat is distributed under the BSD license (see the `COPYING` file).
The documentation is
[available online](http://www.vlfeat.org/index.html) and shipped with
the library as `doc/index.html`. See also:
* [Using with MATLAB](http://www.vlfeat.org/install-matlab.html)
* [Using the command line utilities](http://www.vlfeat.org/install-shell.html)
* [Using the C API](http://www.vlfeat.org/install-c.html)
* [Compiling from source](http://www.vlfeat.org/compiling.html)
## Quick start with MATLAB
To start using VLFeat as a MATLAB toolbox, download the latest VLFeat
[binary package](http://www.vlfeat.org/download/). Note that the
pre-compiled binaries require MATLAB 2009B and later. Unpack it, for
example by using WinZIP (Windows), by double clicking on the archive
(Mac), or by using the command line (Linux and Mac):
> tar xzf vlfeat-X.Y.Z-bin.tar.gz
Here X.Y.Z denotes the latest version. Start MATLAB and run the
VLFeat setup command:
> run <VLFEATROOT>/toolbox/vl_setup
Here `<VLFEATROOT>` should be replaced with the path to the VLFeat
directory created by unpacking the archive. All VLFeat demos can now
be run in a row by the command:
> vl_demo
Check out the individual demos by editing this file: `edit vl_demo`.
## Octave support
The toolbox should be laregly compatible with GNU Octave, an open
source MATLAB equivalent. However, the binary distribution does not
ship with pre-built GNU Octave MEX files. To compile them use
> cd <vlfeat directory>
> make MKOCTFILE=<path to the mkoctfile program>
# Changes
- **0.9.20** Maintenance release. Bugfixes.
- **0.9.19** Maintenance release. Minor bugfixes and fixes compilation
with MATLAB 2014a.
- **0.9.18** Several bugfixes. Improved documentation, particularly of
the covariant detectors. Minor enhancements of the Fisher vectors.
- **0.9.17** Rewritten SVM implementation, adding support for SGD and
SDCA optimisers and various loss functions (hinge, squared hinge,
logistic, etc.) and improving the interface. Added infrastructure to
support multi-core computations using OpenMP (MATLAB 2009B or later
required). Added OpenMP support to KD-trees and KMeans. Added new
Gaussian Mixture Models, VLAD encoding, and Fisher Vector encodings
(also with OpenMP support). Added LIOP feature descriptors. Added
new object category recognition example code, supporting several
standard benchmarks off-the-shelf.
- **0.9.16** Added `VL_COVDET`. This function implements the following
detectors: DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale
Hessian, Multiscale Harris. It also implements affine adaptation,
estiamtion of feature orientation, computation of descriptors on the
affine patches (including raw patches), and sourcing of custom
feature frame.
- **0.9.15** Added `VL_HOG` (HOG features). Added `VL_SVMPEGASOS` and
a vastly improved SVM implementation. Added `VL_IHASHSUM` (hashed
counting). Improved INTHIST (integral histogram). Added
`VL_CUMMAX`. Improved the implementation of `VL_ROC` and
VL_PR(). Added VL_DET() (Detection Error Trade-off (DET)
curves). Improved the verbosity control to AIB. Added support for
Xcode 4.3, improved support for past and future Xcode
versions. Completed the migration of the old test code in
`toolbox/test`, moving the functionality to the new unit tests
`toolbox/xtest`.
- **0.9.14** Added SLIC superpixels. Added VL_ALPHANUM(). Improved
Windows binary package and added support for Visual
Studio 2010. Improved the documentation layout and added a proper
bibliography. Bugfixes and other minor improvements. Moved from the
GPL to the less restrictive BSD license.
- **0.9.13** Fixed Windows binary package.
- **0.9.12** Fixes `vl_compile` and the architecture string on Linux 32 bit.
- **0.9.11** Fixes a compatibility problem on older Mac OS X versions.
A few bugfixes are included too.
- **0.9.10** Improves the homogeneous kernel map. Plenty of small
tweaks and improvements. Make maci64 the default architecture on the
Mac.
- **0.9.9** Added: sift matching example. Extended Caltech-101
classification example to use kd-trees.
- **0.9.8** Added: image distance transform, PEGASOS, floating point
K-means, homogeneous kernel maps, a Caltech-101 classification
example. Improved documentation.
- **0.9.7** Changed the Mac OS X binary distribution to require a less
recent version of Mac OS X (10.5).
- **0.9.6** Changed the GNU/Linux binary distribution to require a
less recent version of the C library.
- **0.9.5** Added kd-tree and new SSE-accelerated vector/histogram
comparison code. Improved dense SIFT (dsift) implementation. Added
Snow Leopard and MATLAB R2009b support.
- **0.9.4** Added quick shift. Renamed dhog to dsift and improved
implementation and documentation. Improved tutorials. Added 64 bit
Windows binaries. Many other small changes.
- **0.9.3** Namespace change (everything begins with a vl_ prefix
now). Many other changes to provide compilation support on Windows
with MATLAB 7.
- **beta-3** Completes to the ikmeans code.
- **beta-2** Many additions.
- **beta-1** Initial public release.
没有合适的资源?快使用搜索试试~ 我知道了~
使用 MATLAB 进行图像对齐和拼接.zip
共889个文件
m:267个
jpg:260个
mexw64:48个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 141 浏览量
2024-05-12
11:22:47
上传
评论
收藏 167.26MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
使用 MATLAB 进行图像对齐和拼接.zip (889个子文件)
shuffle.bash 171B
vl_covdet.c 28KB
vl_svmtrain.c 22KB
vl_alldist2.c 17KB
vl_sift.c 14KB
vl_gmm.c 12KB
vl_kmeans.c 11KB
vl_dsift.c 10KB
vl_hog.c 10KB
vl_imsmooth.c 10KB
vl_mser.c 9KB
vl_ubcmatch.c 9KB
vl_aib.c 7KB
vl_siftdescriptor.c 7KB
vl_localmax.c 7KB
vl_ihashsum.c 6KB
vl_inthist.c 6KB
vl_hikmeanspush.c 6KB
vl_imwbackwardmx.c 6KB
vl_hikmeans.c 6KB
vl_kdtreebuild.c 6KB
vl_alldist.c 6KB
vl_homkermap.c 6KB
vl_erfill.c 6KB
vl_fisher.c 5KB
vl_liop.c 5KB
vl_twister.c 5KB
vl_vlad.c 5KB
vl_kdtreequery.c 4KB
vl_ihashfind.c 4KB
vl_ikmeans.c 4KB
vl_slic.c 4KB
vl_aibhist.c 4KB
vl_imdisttf.c 4KB
vl_binsum.c 4KB
vl_quickshift.c 4KB
vl_cummax.c 4KB
vl_ikmeanspush.c 4KB
vl_sampleinthist.c 3KB
vl_imintegral.c 3KB
vl_lbp.c 2KB
vl_irodr.c 2KB
vl_rodr.c 2KB
vl_tpsumx.c 2KB
vl_binsearch.c 2KB
vl_version.c 2KB
vl_threads.c 995B
vl_simdctrl.c 985B
vl_getpid.c 852B
COPYING 1KB
vl_binsum.def 8KB
vl_cummax.def 2KB
msvcr100.dll 808KB
msvcr100.dll 751KB
vl.dll 296KB
vl.dll 223KB
libvl.dylib 365KB
libvl.dylib 330KB
mexutils.h 26KB
kdtree.h 16KB
svms_common.h 8KB
redrock.jpg 8.55MB
yellowstone5.jpg 7.25MB
glacier.jpg 3.39MB
intersection.jpg 3.24MB
yellowstone2.jpg 1.96MB
yellowstone2.jpg 1.95MB
yellowstone5.jpg 1.86MB
redrock.jpg 1.67MB
GrandCanyon2.jpg 1.52MB
GrandCanyon2.jpg 1.45MB
GrandCanyon1.jpg 1.41MB
mosaicGrandCanyon.jpg 1.37MB
CIMG3201.JPG 1.18MB
CIMG3200.JPG 1.17MB
CIMG3215.JPG 1.17MB
CIMG3213.JPG 1.15MB
CIMG3217.JPG 1.15MB
CIMG3207.JPG 1.15MB
CIMG3211.JPG 1.13MB
CIMG3219.JPG 1.13MB
CIMG3209.JPG 1.1MB
yellowstone4.jpg 1.1MB
CIMG3198.JPG 1.09MB
CIMG3205.JPG 1.09MB
CIMG3091.JPG 1.09MB
CIMG3094.JPG 1.06MB
CIMG3093.JPG 1.06MB
CIMG3087.JPG 1.05MB
CIMG3096.JPG 1.04MB
CIMG3089.JPG 1.04MB
CIMG3208.JPG 1.01MB
CIMG3202.JPG 1MB
CIMG3204.JPG 1021KB
CIMG3206.JPG 1017KB
CIMG3197.JPG 1009KB
CIMG3088.JPG 1009KB
CIMG3085.JPG 1006KB
CIMG3095.JPG 1000KB
CIMG3086.JPG 990KB
共 889 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
matlab科研助手
- 粉丝: 3w+
- 资源: 5960
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功