# Corrupted-Image-Repair-Algorithm-via-PDE-Based-SOR-Scheme-for-Image-Inpainting
Algorithm for Corrupted Image Repair via Partial Differential Equation (PDE)-Based Successive Overrelaxation (SOR) Scheme for Image Inpainting
# 2D FDM Image Restoration Algorithm
This MATLAB code implements a 2D Finite Difference Method (FDM) for image restoration, specifically designed for the corrupted image "greece.tif". The algorithm aims to fill in the holes present in the corrupted image using the 2D FDM equation. The forcing function necessary for the restoration process is provided in the file "forcing.mat".
## Prerequisites
- MATLAB environment
- Image Processing Toolbox
## Usage
1. Make sure all the required files ("greece.tif", "forcing.mat", "badpicture.mat", and "badpixels.tif") are present in the MATLAB working directory.
2. Run the MATLAB script.
## Description
1. **File Inputs**:
- `greece.tif`: Original uncorrupted picture.
- `badpicture.mat`: Corrupted image data.
- `badpixels.tif`: Indicator picture showing corrupted pixel sites.
- `forcing.mat`: Magic forcing function used for restoration.
2. **Restoration Process**:
- The algorithm initializes by loading necessary data and setting parameters.
- It iterates over the missing pixels, updating the restored image using the 2D FDM equation.
- Two restoration processes are conducted: one without a forcing function and one with a forcing function.
- Error vectors are calculated for both processes.
- Restored images are displayed along with plots showing error versus iteration.
3. **Parameters**:
- `total_iterations`: Total number of iterations for restoration.
- `a`: Relaxation parameter for the update equation.
- `E`: Error vector for each pixel.
- `err1`, `err2`: Error vectors for restoration without and with a forcing function, respectively.
## Outputs
1. **Figure 1**: Original uncorrupted image.
2. **Figure 2**: Corrupted image.
3. **Figure 3**: Restored image without forcing function.
4. **Figure 4**: Restored image with forcing function.
5. **Figure 5**: Plot of error vectors versus iteration.
### All 4 Images Comparision
![All 4 Images Comparision](All_4_Images_Comparision.png)
### Ideal Output and Algorithm Output Comparision
![Ideal Output and Algorithm Output Comparision](Ideal_Output_and_Algorithm_Output_Comparision.png)
## Additional Notes
- This algorithm utilizes the 2D FDM equation for image restoration.
- It allows for comparison between restoration with and without a forcing function.
- Error vectors provide insights into the convergence of the restoration process.
For further details, refer to the comments within the MATLAB script.
没有合适的资源?快使用搜索试试~ 我知道了~
基于偏微分方程(PDE)的连续超松弛(SOR)图像修复算法matlab代码.zip
共13个文件
xml:3个
tif:2个
png:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 51 浏览量
2024-04-14
00:29:31
上传
评论
收藏 4.22MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
基于偏微分方程(PDE)的连续超松弛(SOR)图像修复算法matlab代码.zip (13个子文件)
基于偏微分方程(PDE)的连续超松弛(SOR)图像修复算法matlab代码
Corrupted-Image-Repair-Algorithm-via-PDE-Based-SOR-Scheme-for-Image-Inpainting-main
.vscode
settings.json 188B
greece.tif 908KB
All_4_Images_Comparision.png 884KB
badpixels.tif 18KB
forcing.mat 1.47MB
.idea
vcs.xml 167B
workspace.xml 2KB
modules.xml 408B
Corrupted-Image-Repair-Algorithm-via-PDE-Based-SOR-Scheme-for-Image-Inpainting.iml 458B
Ideal_Output_and_Algorithm_Output_Comparision.png 776KB
Inpainting_Algorithm.m 7KB
badpicture.mat 615KB
README.md 3KB
共 13 条
- 1
资源评论
matlab科研助手
- 粉丝: 3w+
- 资源: 5962
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功