# Battery_State_of_Charge_Estimation_Device
<h3>Introduction</h3>
<br>This is a deep learning approach to estimate State-of-Charge of 18650 Li-Ion batteries in real-time with high accuracy.</br>
<br>The dataset, used can be found here, [Dataset](https://data.mendeley.com/datasets/cp3473x7xv/1).
<br>Clone this repo into your working directory and execute the **training_code.m** file to train an artifical neural network.
<br>You can change the network hyper-parameters to improve training results.
<br>Once the training is complete, you can export the model into various formats as per your use case through builtin matlab commands. In this case, it has been exported as a Tensorflow model and later converted to TFLite format to be deployed on Hardware.
<br>Matlab Code files have been written in Matlab 2020b and all python files have been verified to work in Python 3.9
<br>The Schematic and board files for the PCB HAT designed for Raspberry Pi can be found in the [PCB](https://github.com/SIDDHARTH-S-001/Battery_State_of_Charge_Estimation_Device/tree/main/PCB) folder. These were designed in [Eagle](https://www.autodesk.com/products/eagle/overview?term=1-YEAR&tab=subscription) 9.6.2
<h3>Components</h3>
<br>1) Raspberry Pi 4</br>
<br>2) 3Ah 18650 Li-Ion cell</br>
<br>3) 0-25V Generic Voltage sensor</br>
<br>4) 0-30A ACS712 Current Sensor</br>
<br>5) DHT11 Temperature Humidity Sensor</br>
<br>6) ADS1115 / MCP3208 (ADC)</br>
没有合适的资源?快使用搜索试试~ 我知道了~
蓄电池充电状态估计装置matlab代码.zip
共85个文件
job:22个
png:14个
mat:14个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 165 浏览量
2024-03-31
13:17:03
上传
评论
收藏 66.06MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
蓄电池充电状态估计装置matlab代码.zip (85个子文件)
蓄电池充电状态估计装置matlab代码
soc_model.tflite 21KB
data_convert.m 2KB
soc_ann.mat 15KB
PSO_based_tuning.m 6KB
PCB
Schematic_09.job 55KB
Schematic.s#6 48KB
Schematic_11.job 54KB
Schematic_07.job 54KB
Schematic.s#1 48KB
Schematic_13.job 55KB
Schematic_00.job 78KB
Schematic_17.job 55KB
Schematic_03.job 54KB
Schematic_02.job 54KB
Schematic.s#4 49KB
Schematic_06.job 54KB
Schematic_18.job 55KB
Schematic.s#3 48KB
Schematic_19.job 55KB
Schematic.brd 40KB
Schematic_16.job 56KB
Schematic_01.job 54KB
Schematic_05.job 54KB
Schematic_10.job 55KB
Schematic_04.job 54KB
Schematic.pro 1KB
Schematic_08.job 56KB
Schematic_20.job 55KB
Schematic_14.job 55KB
Schematic.b## 50KB
Schematic_21.job 55KB
Schematic_15.job 56KB
Schematic.s#5 48KB
Schematic.sch 50KB
Schematic.s#2 48KB
Schematic_12.job 55KB
new_ann
__init__.py 3KB
weights.h5 87KB
README.txt 1KB
model.py 1KB
__pycache__
model.cpython-39.pyc 1KB
__init__.cpython-39.pyc 2KB
pso_new.m 4KB
ann_model
__init__.py 3KB
weights.h5 87KB
README.txt 1KB
model.py 1KB
testing.ipynb 6KB
__pycache__
model.cpython-39.pyc 1KB
__init__.cpython-39.pyc 2KB
README.md 1KB
Battery_State_of_Charge_Estimation_Device-main
Codes
25-10-0.01-0.99-10-percentage.png 23KB
5-10-15-0.01-0.9999.png 97KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_6.png 54KB
ArchitectureF2.png 1.15MB
Architecture.png 2.75MB
25-10-0.01-0.99-10.png 107KB
10-25-0.01-0.999-10.png 99KB
15-30-10-0.01-0.1-150-percentage.png 24KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_6.eps 421KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_3.jpg 79KB
10-25-5.png 102KB
ArchitectureF.png 1.15MB
Dataset
LGHG2@n10C_to_25degC
Train
TRAIN_LGHG2@n10degC_to_25degC_Norm_5Inputs.mat 16.82MB
Test
02_TEST_LGHG2@0degC_Norm_(05_Inputs).mat 1.22MB
01_TEST_LGHG2@n10degC_Norm_(05_Inputs).mat 1.13MB
04_TEST_LGHG2@25degC_Norm_(05_Inputs).mat 1.4MB
03_TEST_LGHG2@10degC_Norm_(05_Inputs).mat 1.28MB
Other_Files
data_t.txt 23MB
TRAIN_LGHG2@0degC_Norm_5Inputs.mat 4.47MB
TRAIN_LGHG2@25degC_Norm_5Inputs.mat 4.45MB
TRAIN_LGHG2@10degC_Norm_5Inputs.mat 3.93MB
TRAIN_LGHG2@n10degC_Norm_5Inputs.mat 3.96MB
LGHG2_Min_Max_25degC_to_n10degC.mat 274B
TRAIN_LGHG2@n10degC_to_25degC_Norm_5Inputs_TwoCharges.mat 8.08MB
TRAIN_LGHG2@n10degC_to_25degC_Norm_5Inputs_OneCharge.mat 7.91MB
Validation
01_TEST_LGHG2@n10degC_Norm_(05_Inputs).mat 1.13MB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_2.jpg 79KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage.png 96KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_5.eps 19KB
15-30-10-0.01-0.1-150.png 87KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_5.png 20KB
15-25-10-0.01-0.5-1000-3000 Epochs RMSE 1.02 percentage_4.pdf 91KB
5-10-5.png 104KB
training_code.m 4KB
共 85 条
- 1
资源评论
matlab科研助手
- 粉丝: 3w+
- 资源: 5961
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功