<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
English | [ç®ä½ä¸æ](.github/README_cn.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)Â ð RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ð NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) ð
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- [Hyperpar
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库.zip本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库.zip本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库.zip本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库.zip本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中。
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库.zip (475个子文件)
setup.cfg 2KB
hook.code-snippets 465B
vue.code-snippets 309B
variables.css 1KB
app-loading.css 1KB
element-plus.css 974B
style.css 423B
.env.development 466B
Dockerfile 2KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
.editorconfig 217B
.eslintignore 74B
.gitattributes 75B
.gitignore 4KB
.gitignore 403B
.gitignore 176B
index.html 2KB
index.html 544B
favicon_backup.ico 66KB
favicon.ico 15KB
yolov5_garbage_detect.iml 336B
alembic.ini 857B
base64_results.ipynb 709KB
tutorial.ipynb 57KB
load_model.ipynb 5KB
batch_1_000029.jpg 526KB
batch_1_000029.jpg 526KB
bus.jpg 476KB
bus.jpg 476KB
bus.jpg 476KB
zidane.jpg 165KB
zidane.jpg 165KB
zidane.jpg 165KB
.eslintrc.js 2KB
prettier.config.js 651B
package.json 3KB
tsconfig.json 1KB
settings.json 707B
extensions.json 268B
LICENSE 34KB
LICENSE 1KB
script.py.mako 494B
README.md 29KB
Load YOLOv5 from PyTorch Hub.md 16KB
README.md 11KB
README.md 10KB
README.md 8KB
README.md 8KB
README.md 5KB
CONTRIBUTING.md 5KB
README.zh-CN.md 5KB
README.md 2KB
前后端code约定.md 382B
TODO_list.md 275B
Start_Command.md 172B
image-20230403231026292.png 6.01MB
image-20230403231026292.png 6.01MB
image-20230403230922762.png 2.22MB
image-20230403230922762.png 2.22MB
logo-text-2_backup.png 407KB
image-20230403230502549.png 389KB
image-20230403230502549.png 389KB
image-20230403230502551.png 378KB
image-20230403230502551.png 378KB
logo-text-1_backup.png 373KB
image-20230403230502552.png 370KB
image-20230403230502552.png 370KB
image-20230403230502550.png 366KB
image-20230403230502550.png 366KB
image-20230403231338333.png 339KB
image-20230403231338333.png 339KB
image-20230403231323497.png 338KB
image-20230403231323497.png 338KB
image-20230403231402480.png 337KB
image-20230403231402480.png 337KB
image-20230403231254518.png 335KB
image-20230403231254518.png 335KB
image-20230403230502548.png 317KB
image-20230403230502548.png 317KB
image-20230403231402492.png 223KB
image-20230403231402492.png 223KB
image-20230403230444431.png 162KB
image-20230403230444431.png 162KB
image-20230403231206301.png 161KB
image-20230403231206301.png 161KB
image-20230403230521253.png 160KB
image-20230403230521253.png 160KB
image-20230404231402504.png 132KB
image-20230404231402504.png 132KB
image-20230403230432273.png 124KB
image-20230403230432273.png 124KB
image-20230403230425094.png 124KB
image-20230403230425094.png 124KB
image-20230417145855517.png 121KB
image-20230417145855517.png 121KB
image-20230404231402497.png 120KB
image-20230404231402497.png 120KB
共 475 条
- 1
- 2
- 3
- 4
- 5
资源评论
盈梓的博客
- 粉丝: 9279
- 资源: 2197
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功