<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
English | [绠�浣撲腑鏂嘳(.github/README_cn.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 馃殌 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.producthunt.com/@glenn_jocher">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)聽 馃殌 RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)聽 鈽橈笍
RECOMMENDED
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)聽 馃専 NEW
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)聽 馃専 NEW
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)聽 猸� NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 馃殌
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)聽 猸� NEW
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998)聽 猸� NEW
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip 本程序基于pytorch框架与yolov5物体检测平台,实现了人工智能对FPS(第一人称射击)游戏的辅助瞄准。与传统游戏作弊方式不同,本程序不读取或改动游戏的内存数据,而是通过人工智能实时分析游戏画面、确定敌人位置并移动鼠标射击,反应流程与人脑相同,难以被普通反作弊方式检测。本程序的特点有: 单次识别过程经过反复优化,在RTX30系显卡下单次时延$\leq 0.1s$ 前后端分离,前端启动器UI界面现代化、扁平化,提供参数调节功能并与后端通过json参数共享 设计演示模式,实时展现AI的识别过程 设计静态和动态模式,在敌人静态和近匀速运动时有可观的射击精准度 适配多款射击游戏,对CS:GO(《反恐精英:全球攻势》)单独优化,考虑到鼠标加速与鼠标灵敏度设置对程序参数的影响基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip
资源推荐
资源详情
资源评论
收起资源包目录
基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip (136个子文件)
setup.cfg 2KB
Dockerfile 2KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
手册.docx 1.61MB
.gitattributes 75B
.gitignore 4KB
.gitignore 80B
tutorial.ipynb 56KB
bus.jpg 476KB
zidane.jpg 165KB
launcher_params.json 55B
running_status.json 1B
LICENSE 34KB
README.md 16KB
README_cn.md 15KB
README.md 11KB
CODE_OF_CONDUCT.md 5KB
CONTRIBUTING.md 5KB
README.md 2KB
PULL_REQUEST_TEMPLATE.md 693B
SECURITY.md 359B
QQ图片20220714231520.png 1.52MB
image-20220715203301128-16660975350561.png 636KB
image-20220715203301128.png 636KB
image-20220715211142842.png 401KB
image-20220715204314973.png 44KB
QQ图片20220714231212.png 36KB
image-20220715204323687.png 32KB
yolov5s.pt 14.12MB
yolov5n.pt 3.87MB
dataloaders.py 47KB
general.py 41KB
common.py 35KB
train.py 34KB
export.py 29KB
wandb_utils.py 27KB
tf.py 25KB
plots.py 21KB
val.py 19KB
yolo.py 15KB
metrics.py 14KB
torch_utils.py 13KB
detect.py 13KB
augmentations.py 12KB
loss.py 10KB
__init__.py 8KB
launcher_0.3.6.py 8KB
autoanchor.py 7KB
launcher_0.3.5.py 7KB
downloads.py 7KB
benchmarks.py 7KB
hubconf.py 6KB
launcher_0.3.3.py 5KB
launcher_0.3.2.py 5KB
ai_0.3.2.py 5KB
ai_0.3.1.py 4KB
launcher_0.3.1.py 4KB
tune.py 4KB
experimental.py 4KB
activations.py 3KB
demo.py 3KB
autobatch.py 3KB
callbacks.py 2KB
asr_switch.py 2KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
__init__.py 1KB
log_dataset.py 1KB
audio.py 735B
example_request.py 368B
test.py 278B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
get_coco.sh 900B
mime.sh 780B
get_coco128.sh 615B
download_weights.sh 523B
requirements.txt 1KB
additional_requirements.txt 105B
Objects365.yaml 8KB
xView.yaml 5KB
VOC.yaml 3KB
anchors.yaml 3KB
VisDrone.yaml 3KB
Argoverse.yaml 3KB
sweep.yaml 2KB
SKU-110K.yaml 2KB
coco.yaml 2KB
yolov5-p7.yaml 2KB
GlobalWheat2020.yaml 2KB
yolov5s6.yaml 2KB
yolov5n6.yaml 2KB
yolov5x6.yaml 2KB
yolov5m6.yaml 2KB
共 136 条
- 1
- 2
资源评论
- alanarcher2023-12-20资源不错,很实用,内容全面,介绍详细,很好用,谢谢分享。
盈梓的博客
- 粉丝: 9569
- 资源: 2310
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- CC2530无线zigbee裸机代码实现按键控制LED开关.zip
- CC2530无线zigbee裸机代码实现按键控制PWM灯光强度.zip
- CC2530无线zigbee裸机代码实现按键控制流水灯.zip
- 无感FOC电机三相控制高速吹风筒方案 FU6812L+FD2504S 电压AC220V 功率80W 最高转速20万RPM 方案优势:响应快、效率高、噪声低、成本低 控制方式:三相电机无感FOC 闭环方
- CC2530无线zigbee裸机代码实现查询方式使用定时器.zip
- CC2530无线zigbee裸机代码实现串口UART0发送字符串.zip
- CC2530无线zigbee裸机代码实现串口UART0收发字符串.zip
- CC2530无线zigbee裸机代码实现串口发送指令控制LED灯.zip
- CC2530无线zigbee裸机代码实现定时器T1的使用.zip
- CC2530无线zigbee裸机代码实现定时器T3的使用.zip
- 基于51单片机的PWM波形发生器设计(Protues仿真)-毕业设计
- 模块化多电平变流器 MMC 的VSG控制 同步发电机控制 MATLAB–Simulink仿真模型 5电平三相MMC,采用VSG控制 受端接可编辑三相交流源,直流侧接无穷大电源提供调频能量 设置频率
- 锁相环学习电路,有教程 对新手非常友好,一看就懂 1,输出频率800MHz或者1GHz, 采用Ring-VCO的结构 2,输入参考频率20MHz 3,分频器是40-50分频 4,电荷泵电流
- MF000588-ASP.NET信息中心标准化管理系统源码.zip
- 基于51单片机的烟雾采集报警系统(protues仿真)-毕业设计
- 模拟器银河麒麟是基于Linux发行版Ubuntu开发的自主可控操作系统,为我国信息基础建设提供了重要支撑 截至目前,银河麒麟V10的软件仓库已经提供了大量国产软件,但在特定情况下,我们可能还是希望使用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功