# ClearML Integration
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
## About ClearML
[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time â±ï¸.
ð¨ Track every YOLOv5 training run in the <b>experiment manager</b>
ð§ Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
ð¦ <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
ð¬ Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
ð Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
<br />
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
<br />
<br />
![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif)
<br />
<br />
## 𦾠Setting Things Up
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
1. Install the `clearml` python package:
```bash
pip install clearml
```
1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
```bash
clearml-init
```
That's it! You're done ð
<br />
## ð Training YOLOv5 With ClearML
To enable ClearML experiment tracking, simply install the ClearML pip package.
```bash
pip install clearml>=1.2.0
```
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`.
PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
or with custom project and task name:
```bash
python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
This will capture:
- Source code + uncommitted changes
- Installed packages
- (Hyper)parameters
- Model files (use `--save-period n` to save a checkpoint every n epochs)
- Console output
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
- General info such as machine details, runtime, creation date etc.
- All produced plots such as label correlogram and confusion matrix
- Images with bounding boxes per epoch
- Mosaic per epoch
- Validation images per epoch
- ...
That's a lot right? ð¤¯
Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
<br />
## ð Dataset Version Management
Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif)
### Prepare Your Dataset
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ LICENSE
|_ README.txt
```
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
Next, â ï¸**copy the corresponding yaml file to the root of the dataset folder**â ï¸. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ coco128.yaml # <---- HERE!
|_ LICENSE
|_ README.txt
```
### Upload Your Dataset
To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
```bash
cd coco128
clearml-data sync --project YOLOv5 --name coco128 --folder .
```
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
```bash
# Optionally add --parent <parent_dataset_id> if you want to base
# this version on another dataset version, so no duplicate files are uploaded!
clearml-data create --name coco128 --project YOLOv5
clearml-data add --files .
clearml-data close
```
### Run Training Using A ClearML Dataset
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 ð models!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
```
<br />
## ð Hyperparameter Optimization
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
```bash
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
pip install optuna
python utils/loggers/clearml/hpo.py
```
![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png)
## 𤯠Remote Execution (advanced)
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access t
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于DeepSORT算法和YOLOv5 7.0版本的目标跟踪实现。DeepSORT是一种强大的多目标跟踪算法,结合YOLOv5 7.0版本的目标检测能力,可以实现高效准确的实时目标跟踪。 基于 YOLOV5 和 DeepSort 的目标追踪算法是一种结合了目标检测和运动预测的方法,用于在视频中实现多目标跟踪。 YOLOV5 是一种目标检测算法,它能够从视频帧中检测出目标对象,并给出其位置信息。具体来说,YOLOV5 通过将视频分解成多幅图像并逐帧执行,能够识别出每帧中的目标对象,并为其分配标签。 DeepSort 是基于 SORT 的目标跟踪算法的改进版。它从 SORT 演变而来,使用卡尔曼滤波器预测所检测对象的运动轨迹,并使用匈牙利算法将它们与新的检测目标相匹配。DeepSort 还整合了外观信息,从而提高 SORT 的性能,这使得在遇到较长时间的遮挡时,也能够正常跟踪目标,并有效减少 ID 转换的发生次数。 在基于 YOLOV5 和 DeepSort 的目标追踪算法中,首先使用 YOLOV5 对视频帧进行目标检测,然后使用 DeepSort 对检测到的目标进行跟踪。具体步
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOV5-7.0+DeepSort的目标追踪算法 (193个子文件)
Dockerfile 3KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.gitignore 50B
.gitkeep 0B
Yolov5-Deepsort-main.iml 485B
train.jpg 59KB
optimizer_config.json 3KB
README.md 11KB
README.md 11KB
README.md 4KB
README.md 2KB
README.md 65B
2e92749df0b97ef3f168a356d0fd1c6b.mp4 4.8MB
image.png 799KB
person.pt 13.69MB
dataloaders.py 55KB
general.py 45KB
common.py 41KB
export.py 40KB
tf.py 26KB
torch_utils.py 19KB
__init__.py 18KB
plots.py 18KB
yolo.py 17KB
augmentations.py 17KB
detect.py 16KB
__init__.py 16KB
metrics.py 14KB
dataloaders.py 14KB
json_logger.py 11KB
loss.py 10KB
loss.py 8KB
wandb_utils.py 8KB
clearml_utils.py 8KB
kalman_filter.py 8KB
autoanchor.py 7KB
hpo.py 6KB
linear_assignment.py 6KB
plots.py 6KB
train.py 6KB
general.py 6KB
nn_matching.py 5KB
metrics.py 5KB
hpo.py 5KB
track.py 5KB
downloads.py 5KB
comet_utils.py 5KB
io.py 4KB
tracker.py 4KB
experimental.py 4KB
augmentations.py 4KB
triton.py 4KB
tracker.py 4KB
evaluation.py 3KB
activations.py 3KB
deep_sort.py 3KB
original_model.py 3KB
model.py 3KB
autobatch.py 3KB
iou_matching.py 3KB
callbacks.py 3KB
__init__.py 3KB
test.py 2KB
AIDetector_pytorch.py 2KB
preprocessing.py 2KB
feature_extractor.py 2KB
restapi.py 1KB
resume.py 1KB
demo.py 1KB
draw.py 1KB
parser.py 999B
detection.py 825B
tools.py 734B
__init__.py 500B
log.py 463B
example_request.py 369B
asserts.py 316B
evaluate.py 293B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
dataloaders.cpython-38.pyc 42KB
general.cpython-38.pyc 37KB
common.cpython-38.pyc 37KB
export.cpython-38.pyc 30KB
plots.cpython-38.pyc 17KB
torch_utils.cpython-38.pyc 16KB
yolo.cpython-38.pyc 16KB
augmentations.cpython-38.pyc 13KB
metrics.cpython-38.pyc 11KB
linear_assignment.cpython-36.pyc 7KB
kalman_filter.cpython-36.pyc 7KB
kalman_filter.cpython-38.pyc 7KB
共 193 条
- 1
- 2
资源评论
- LISTENTOME,FOLLOWME2024-05-02#符合预期
- hz201308032023-11-25部分文件里缺少函数啊
- 五楼居士2024-07-23#运行出错
子叶叶
- 粉丝: 1
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功