## ACS
This is the source code for our paper: **Dynamic Deep Neural Network Inference via Adaptive Channel Skipping**. A brief introduction of this work is as follows:
> Deep Neural Networks have recently made remarkable achievements in computer vision applications. However, the high computational requirements needed to achieve accurate inference results can be a significant barrier to deploying DNNs on resource-constrained computing devices, such as those found in the Internet-of-Things. In this work, we propose a fresh approach called Adaptive Channel Skipping (ACS) that prioritizes the identification of the most suitable channels for skipping and implements an efficient skipping mechanism during inference. We begin with the development of a new Gating Network model, ACS-GN, which employs fine-grained channel-wise skipping to enable input-dependent inference and achieve a desirable balance between accuracy and resource consumption. To further enhance the efficiency of channel skipping, we propose a Dynamic Grouping convolutional computing approach, ACS-DG, which helps to reduce the computational cost of ACS-GN. The results of our experiment indicate that ACS-GN and ACS-DG exhibit superior performance compared to existing gating network designs and convolutional computing mechanisms, respectively. When they are combined, the ACS framework results in a significant reduction of computational expenses and a remarkable improvement in the accuracy of inferences.
## Required software
PyTorch
## Acknowledgement
Special thanks to the authors of [DDI](https://arxiv.org/abs/1907.04523) and [DGConv](https://arxiv.org/abs/1908.05867) for their kindly help.
## Contact
Meixia Zou (19120460@bjtu.edu.cn)
> Please note that the open source code in this repository was mainly completed by the graduate student author during his master's degree study. Since the author did not continue to engage in scientific research work after graduation, it is difficult to continue to maintain and update these codes. We sincerely apologize that these codes are for reference only.
没有合适的资源?快使用搜索试试~ 我知道了~
通过自适应通道跳过的动态深度神经网络推理python源码+源代码+文档说明
共5个文件
py:4个
md:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 44 浏览量
2024-01-11
00:24:06
上传
评论
收藏 13KB ZIP 举报
温馨提示
This is the source code for our paper: Dynamic Deep Neural Network Inference via Adaptive Channel Skipping. A brief introduction of this work is as follows: - - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
资源推荐
资源详情
资源评论
收起资源包目录
ACS-main.zip (5个子文件)
ACS-main
models_channel_skip_new_gate.py 16KB
dgconv.py 2KB
g_resnext.py 7KB
train_base_channel_skip_new_gate.py 19KB
README.md 2KB
共 5 条
- 1
资源评论
机智的程序员zero
- 粉丝: 2416
- 资源: 4812
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功