<div align="center">
<p>
<a href="https://www.ultralytics.com/events/yolovision" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
</div>
<br>
[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
<img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
### Python
YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.pt")
# Train the model
train_results = model.train(
data="coco8.yaml", #
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
YOLO11改进 - 注意力机制 - 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升独家创新 (777个子文件)
main.cc 10KB
inference.cc 7KB
main.cc 1KB
CITATION.cff 764B
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 5KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson-jetpack4 3KB
Dockerfile-jetson-jetpack5 3KB
Dockerfile-jetson-jetpack6 3KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
main.html 1KB
source-file.html 858B
favicon.ico 9KB
tutorial.ipynb 36KB
explorer.ipynb 20KB
object_tracking.ipynb 12KB
object_counting.ipynb 12KB
heatmaps.ipynb 10KB
hub.ipynb 5KB
bus.jpg 134KB
zidane.jpg 49KB
extra.js 3KB
LICENSE 34KB
predict.md 44KB
tensorrt.md 37KB
openvino.md 33KB
ros-quickstart.md 33KB
nvidia-jetson.md 30KB
README.md 30KB
README.zh-CN.md 29KB
model-deployment-options.md 27KB
yolo-world.md 24KB
raspberry-pi.md 23KB
yolov8.md 23KB
quickstart.md 23KB
ibm-watsonx.md 23KB
steps-of-a-cv-project.md 23KB
yolo11.md 22KB
yolov10.md 21KB
track.md 21KB
simple-utilities.md 21KB
sam-2.md 20KB
yolo-common-issues.md 20KB
model-training-tips.md 20KB
roboflow.md 20KB
analytics.md 20KB
train_custom_data.md 19KB
heatmaps.md 19KB
model-deployment-practices.md 19KB
model-monitoring-and-maintenance.md 19KB
yolov9.md 18KB
models.md 18KB
vscode.md 18KB
yolov7.md 18KB
data-collection-and-annotation.md 18KB
object-counting.md 18KB
inference-api.md 18KB
isolating-segmentation-objects.md 18KB
train.md 17KB
cfg.md 17KB
ray-tune.md 16KB
sam.md 16KB
CI.md 16KB
model-testing.md 16KB
kfold-cross-validation.md 15KB
yolo-performance-metrics.md 15KB
fast-sam.md 15KB
amazon-sagemaker.md 15KB
index.md 15KB
defining-project-goals.md 15KB
model_export.md 15KB
python.md 15KB
pytorch_hub_model_loading.md 15KB
preprocessing_annotated_data.md 14KB
jupyterlab.md 14KB
model-evaluation-insights.md 14KB
tensorboard.md 14KB
train-args.md 14KB
api.md 14KB
yolov5.md 14KB
clearml.md 14KB
kaggle.md 14KB
index.md 14KB
hyperparameter-tuning.md 14KB
paddlepaddle.md 14KB
torchscript.md 13KB
共 777 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8
资源评论
kay_545
- 粉丝: 2w+
- 资源: 17
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于java+springboot+mysql+微信小程序的高校宿舍信息管理系统 源码+数据库+论文(高分毕业设计).zip
- 圣诞树代码编程python
- 基于java+springboot+mysql+微信小程序的高校就业招聘系统 源码+数据库+论文(高分毕业设计).zip
- tesseract5.5.0源码包
- 基于java+springboot+mysql+微信小程序的高校毕业生就业信息系统 源码+数据库+论文(高分毕业设计).zip
- 基于迟滞控制器的DC-AC逆变器研究simulink实现.rar
- 基于布雷格曼Split Bregman去噪的荧光漫反射迭代重建光学断层扫描Matlab代码.rar
- 基于动态窗口法DWA的机器人路径规划研究附Matlab代码.rar
- 基于改进遗传算法的卡车和两架无人机旅行推销员问题(D2TSP)附Matlab代码.rar
- 基于多目标粒子群优化算法的冷热电联供型综合能源系统运行优化Matlab代码.rar
- 基于分时电价策略的家庭能量系统优化附Matlab代码.rar
- 基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减附Matlab代码.rar
- 基于后向自动微分的盲反卷积算法MNAD及其在滚动轴承故障诊断中的应用Matlab代码.rar
- 基于精英遗传算法的电动汽车有序充电方法研究附Matlab代码.rar
- 基于模型预测控制对PMSM进行FOC控制Simulink实现.rar
- 基于快速傅里叶变换FFT、窗函数法、希尔伯特-黄变换、小波变换电力系统同步相量计算研究附Matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功