# ð¤ Multi-modal GPT
Train a multi-modal chatbot with visual and language instructions!
Based on the open-source multi-modal model [OpenFlamingo](https://github.com/mlfoundations/open_flamingo), we create various **visual instruction** data with open datasets, including VQA, Image Captioning, Visual Reasoning, Text OCR, and Visual Dialogue. Additionally, we also train the language model component of OpenFlamingo using only **language-only instruction** data.
The **joint training** of visual and language instructions effectively improves the performance of the model! For more details please refer to our [technical report](https://arxiv.org/abs/2305.04790).
Welcome to join us!
</div>
<div align="center">
English | [ç®ä½ä¸æ](README_zh-CN.md)
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>
## Online Demo
ð [***Demo Link***](https://mmgpt.openmmlab.org.cn/)
<img src="https://user-images.githubusercontent.com/12907710/237001772-f6e94884-db35-47a0-9fb8-09c2c6a692ff.png" width="70%" alt="" />
## Features
- Support various vision and language instruction data
- Parameter efficient fine-tuning with LoRA
- Tuning vision and language at the same time, complement each other
## Installation
To install the package in an existing environment, run
```bash
git clone https://github.com/open-mmlab/Multimodal-GPT.git
cd Multimodal-GPT
pip install -r requirements.txt
pip install -v -e .
```
or create a new conda environment
```bash
conda env create -f environment.yml
```
## Launch Demo Locally
1. Download the pre-trained weights.
Use [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) for converting LLaMA weights to Hugging Face format.
Download the OpenFlamingo pre-trained model from [openflamingo/OpenFlamingo-9B](https://huggingface.co/openflamingo/OpenFlamingo-9B).
Download our LoRA Weight from [here](https://download.openmmlab.com/mmgpt/v0/mmgpt-lora-v0-release.pt).
Then place these models in `checkpoints` folders like this:
```
checkpoints
âââ llama-7b_hf
â âââ config.json
â âââ pytorch_model-00001-of-00002.bin
â âââ ......
â âââ tokenizer.model
âââ OpenFlamingo-9B
â âââcheckpoint.pt
âââmmgpt-lora-v0-release.pt
2. launch the gradio demo
```bash
python app.py
```
## Examples
### Recipe:
![image4](https://user-images.githubusercontent.com/12907710/234554562-8f3be88f-d563-47ba-97d9-ade8d47c46b0.png)
### Travel plan:
![image3](https://user-images.githubusercontent.com/12907710/234523464-80c4e3f0-f99f-4498-96ef-dc43ef89c64b.png)
### Movie:
![image2](https://user-images.githubusercontent.com/12907710/234523468-e11905a6-491f-4b87-934f-90da7d14d1c3.png)
### Famous person:
![image](https://user-images.githubusercontent.com/12907710/234523475-fd91f979-a344-4228-813f-6b55a1bc250f.png)
## Fine-tuning
### Prepare datasets
1. [A-OKVQA](https://allenai.org/project/a-okvqa/home)
Download annotation from [this link](https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz) and unzip to `data/aokvqa/annotations`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
2. [COCO Caption](https://cs.stanford.edu/people/karpathy/deepimagesent/)
Download from [this link](https://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip) and unzip to `data/coco`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
3. [OCR VQA](https://ocr-vqa.github.io/)
Download from [this link](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing) and place in `data/OCR_VQA/`.
4. [LlaVA](https://llava-vl.github.io/)
Download from [liuhaotian/LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) and place in `data/llava/`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
5. [Mini-GPT4](https://minigpt-4.github.io/)
Download from [Vision-CAIR/cc_sbu_align](https://huggingface.co/datasets/Vision-CAIR/cc_sbu_align) and place in `data/cc_sbu_align/`.
6. [Dolly 15k](https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html)
Download from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and place it in `data/dolly/databricks-dolly-15k.jsonl`.
7. [Alpaca GPT4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
Download it from [this link](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json) and place it in `data/alpaca_gpt4/alpaca_gpt4_data.json`.
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
8. [Baize](https://github.com/project-baize/baize-chatbot)
Download it from [this link](https://github.com/project-baize/baize-chatbot/blob/main/data/quora_chat_data.json) and place it in `data/baize/quora_chat_data.json`.
## Start training
```bash
torchrun --nproc_per_node=8 mmgpt/train/instruction_finetune.py \
--lm_path checkpoints/llama-7b_hf \
--tokenizer_path checkpoints/llama-7b_hf \
--pretrained_path checkpoints/OpenFlamingo-9B/checkpoint.pt \
--run_name train-my-gpt4 \
--learning_rate 1e-5 \
--lr_scheduler cosine \
--batch_size 1 \
--tuning_config configs/lora_config.py \
--dataset_config configs/dataset_config.py \
--report_to_wandb
```
## Acknowledgements
- [OpenFlamingo](https://github.com/mlfoundations/open_flamingo)
- [LAVIS](https://github.com/salesforce/LAVIS)
- [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)
- [LLaVA](https://github.com/haotian-liu/LLaVA/tree/main)
- [I