%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 训练模型
trees = 100; % 决策树数目
leaf = 5; % 最小叶子数
OOBPrediction = 'on'; % 打开误差图
OOBPredictorImportance = 'on'; % 计算特征重要性
Method = 'regression'; % 分类还是回归
net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance,...
'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);
importance = net.OOBPermutedPredictorDeltaError; % 重要性
%% 仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 绘制误差曲线
figure
plot(1 : trees, oobError(net), 'b-', 'LineWidth', 1)
legend('误差曲线')
xlabel('决策树数目')
ylabel('误差')
xlim([1, trees])
grid
%% 绘制特征重要性
figure
bar(importance)
legend('重要性')
xlabel('特征')
ylabel('重要性')
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M;
mae2 = sum(abs(T_sim2' - T_test )) ./ N;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
没有合适的资源?快使用搜索试试~ 我知道了~
基于随机森林算法(RF)的数据回归预测 (Matlab完整程序和数据)
共2个文件
xlsx:1个
m:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 4 下载量 39 浏览量
2022-11-27
17:19:53
上传
评论 1
收藏 14KB ZIP 举报
温馨提示
基于随机森林算法(RF)的数据回归预测 (Matlab完整程序和数据) 运行版本2018及以上 基于随机森林算法(RF)的数据回归预测 (Matlab完整程序和数据) 运行版本2018及以上 基于随机森林算法(RF)的数据回归预测 (Matlab完整程序和数据) 运行版本2018及以上
资源推荐
资源详情
资源评论
收起资源包目录
基于随机森林算法的数据回归预测.zip (2个子文件)
010_基于随机森林算法的数据回归预测
main.m 3KB
数据集.xlsx 15KB
共 2 条
- 1
资源评论
- ynbo20212023-02-09感谢资源主分享的资源解决了我当下的问题,非常有用的资源。
- m0_672301962022-12-22这个资源总结的也太全面了吧,内容详实,对我帮助很大。
- m0_671705022022-12-31发现一个超赞的资源,赶紧学习起来,大家一起进步,支持!
- 2401_846376222024-05-25这个资源内容超赞,对我来说很有价值,很实用,感谢大佬分享~
前程算法屋
- 粉丝: 5480
- 资源: 782
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功