function [ESN,PSN,MUN,SIN]=emlht(w,ES,PS,MU,SI,zm)
%function [ESN,PSN,MUN,SIN]=emlht(w,ES,PS,MU,SI,zm)
% updates LH subband of HMT model once
% by tying within scale for each subband.
%
% Author: H. Choi
% Last update : 12/14/1998
%
% the data structure of 2-D DWT follows the format used
% in the Rice wavelelet matlab toolbox (see README)
%
% internal variables:
% M : no. of mixture densities
% P : size of image (PxP pixels)
% level : no. of levels of HMT
%
% Input :
% w : data PxP matrix (wavelet transform of an image)
% ES : state transition matrix (MxMxPxP)
% PS : state probability matrix (MxPxP)
% MU : mean matrix (MxPxP)
% SI : variance matrix (MxPxP)
% zm : type of density functions
% zm = 1 : zero mean (do not update MU)
% zm = 0 : nonzero mean (update MU)
%
% Output:
% Updated ES PS MU SI in ESN PSN MUN SIN
M=size(ES,1);
P=size(w,1);
level=log2(P);
BE=zeros(M,P,P);
BEP=zeros(M,P,P);
BER=zeros(M,P,P);
AL=zeros(M,P,P);
P1=zeros(M,P,P);
P2=zeros(M,M,P,P);
%UP step
wtmp = repmat(w,[1 1 M]);
wtmp = shiftdim(wtmp,2);
si=1; ei=2^(level-1); sj=2^(level-1)+1; ej=P;
gtmp = gauss(wtmp,MU,SI);
scale = repmat(mean(gtmp,1),[M 1 1]);
BE(:,si:ei,sj:ej) = gtmp(:,si:ei,sj:ej)./scale(:,si:ei,sj:ej);
%clear MUtmp SItmp;
for k=level:-1:2
J=2^(k-1);J2=J*J; si = 1; ei = J; sj = J+1; ej = 2*J;
EStmp = reshape(ES(:,:,si:ei,sj:ej),M,M*J2);
if M == 2
%%%%%% For M=2 the following is faster
BEtmp = zeros(M,M*J2);
BEtmp(:,1:M:(M*J2))=reshape(BE(:,si:ei,sj:ej),M,J2);
BEtmp(:,2:M:(M*J2))=BEtmp(:,1:M:(M*J2));
else
% For general M (not equal to 2) use the following
%
BEtmp = zeros(M,M*4^(k-1));
for m=1:M
BEtmp(:,m:M:(M*4^(k-1)))=reshape(BE(:,si:ei,sj:ej,:),M,4^(k-1));
end;
end;
BEtmp = reshape(EStmp.*BEtmp,[M M J J]);
BEP(:,si:ei,sj:ej) = squeeze(sum(BEtmp,1));
sni = 1; eni = J/2; snj = J/2+1; enj = J;
%construct betachild matrix here
BCtmp = BEP(:,si:2:ei,sj:2:ej);
BCtmp = BCtmp.*BEP(:,si+1:2:ei,sj:2:ej);
BCtmp = BCtmp.*BEP(:,si:2:ei,sj+1:2:ej);
BCtmp = BCtmp.*BEP(:,si+1:2:ei,sj+1:2:ej);
scaletmp = repmat(mean(BCtmp,1),[M 1 1]);
scale(:,sni:eni,snj:enj) = scale(:,sni:eni,snj:enj).*scaletmp;
BE(:,sni:eni,snj:enj)=gtmp(:,sni:eni,snj:enj)./scale(:,sni:eni,snj:enj).*BCtmp;
%construct BE(:,pai(i),paj(j),dindex) matrix
Btmp=zeros(M,J,J);
Btmp(:,1:2:J,1:2:J)=BE(:,sni:eni,snj:enj);
Btmp(:,2:2:J,1:2:J)=BE(:,sni:eni,snj:enj);
Btmp(:,1:2:J,2:2:J)=BE(:,sni:eni,snj:enj);
Btmp(:,2:2:J,2:2:J)=BE(:,sni:eni,snj:enj);
BER(:,si:ei,sj:ej)=Btmp./BEP(:,si:ei,sj:ej);
end;
clear EStmp BEtmp BCtmp Btmp;
%DOWN step
%initialize
AL(:,1,2) = PS(:,1,2);
for k=2:level
J = 2^(k-1); J2=J*J;
si=1; ei=J; sj=J+1; ej=2*J;
sni = 1; eni = J/2; snj = J/2+1; enj = J;
Atmp=zeros(M,J,J);
Atmp(:,1:2:J,1:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,2:2:J,1:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,1:2:J,2:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,2:2:J,2:2:J)=AL(:,sni:eni,snj:enj);
Atmp = repmat(reshape(Atmp.*BER(:,si:ei,sj:ej),1,M*J2),[M 1]);
EStmp = reshape(ES(:,:,si:ei,sj:ej),M,M*J2);
ALtmp = reshape(EStmp.*Atmp,[M M J J]);
AL(:,si:ei,sj:ej) = squeeze(sum(ALtmp,2));
end;
clear Atmp EStmp ALtmp;
%compute probabilities
for k=2:level
J=2^(k-1); J2=J*J;
si=1; ei=J; sj=J+1; ej=2*J;
sni = 1; eni = J/2; snj = J/2+1; enj = J;
temp = repmat(sum(AL(:,si:ei,sj:ej).*BE(:,si:ei,sj:ej), 1),[M 1]);
P1(:,si:ei,sj:ej) = AL(:,si:ei,sj:ej).*BE(:,si:ei,sj:ej)./temp;
%compute P2
if M == 2
% For M=2 the following may be faster
BEtmp = zeros(M,M*J2);
BEtmp(:,1:M:(M*J2))=reshape(BE(:,si:ei,sj:ej),M,J2);
BEtmp(:,2:M:(M*J2))=BEtmp(:,1:M:(M*J2));
else
% For general M (not equal to 2) use the following
BEtmp = zeros(M,M*J2);
for m=1:M
BEtmp(:,m:M:(M*J2))=reshape(BE(:,si:ei,sj:ej,:),M,J2);
end;
end;
BEtmp = reshape(BEtmp,[M M J J]);
EStmp = ES(:,:,si:ei,sj:ej);
Atmp=zeros(M,J,J);
Atmp(:,1:2:J,1:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,2:2:J,1:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,1:2:J,2:2:J)=AL(:,sni:eni,snj:enj);
Atmp(:,2:2:J,2:2:J)=AL(:,sni:eni,snj:enj);
Atmp = repmat(reshape(Atmp,1,M*J2),[M 1]);
Atmp = reshape(Atmp,[M M J J]);
BERtmp = repmat(reshape(BER(:,si:ei,sj:ej),1,M*J2),[M 1]);
BERtmp = reshape(BERtmp,[M M J J]);
temp = repmat(reshape(temp,1,M*J2),[M 1]);
temp = reshape(temp, [M M J J]);
P2(:,:,si:ei,sj:ej)=BEtmp.*EStmp.*Atmp.*BERtmp./temp;
end;
P1(:,1,2)=AL(:,1,2).*BE(:,1,2)./repmat(sum(AL(:,1,2).*BE(:,1,2),1),[M 1 1]);
clear temp BEtmp EStmp Atmp BERtmp;
%PSP=PS; ESP=ES; MUP=MU; SIP=SI;
%M step
PS(:,1,2)=P1(:,1,2);
for k=2:level
J=2^(k-1); J2=J*J;
si=1; ei=J; sj=J+1; ej=2*J;
sni = 1; eni = J/2; snj = J/2+1; enj = J;
pstmp = sum(sum(P1(:,si:ei,sj:ej),3),2)/J2;
pstmp = pstmp.*(pstmp>1e-4)+1e-4*(pstmp<=1e-4);
PS(:,si:ei,sj:ej) = repmat(pstmp,[1 J J]);
if zm == 0
% do not update MU if zero mean densities
mutmp = sum(sum(wtmp(:,si:ei,sj:ej).*P1(:,si:ei,sj:ej),3),2)/J2;
MU(:,si:ei,sj:ej) = repmat(mutmp,[1 J J])./PS(:,si:ei,sj:ej);
end;
sitmp = sum(sum((wtmp(:,si:ei,sj:ej)-MU(:,si:ei,sj:ej)).^2.*P1(:,si:ei,sj:ej),3),2)/J2;
SI(:,si:ei,sj:ej) = repmat(sitmp,[1 J J])./PS(:,si:ei,sj:ej);
estmp =sum(sum(P2(:,:,si:ei,sj:ej),4),3)/J2;
ptmp = [PS(:,sni,snj)'; PS(:,sni,snj)'];
ES(:,:,si:ei,sj:ej)= repmat(estmp,[1 1 J J])./repmat(ptmp,[1 1 J J]);
end; %k
ESN=ES; PSN=PS; MUN=MU; SIN=SI;
阿里matlab建模师
- 粉丝: 4380
- 资源: 2852
最新资源
- 【创新无忧】基于白鲸优化算法BWO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于白鲸优化算法BWO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于白鲨优化算法WSO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于白鹭群优化算法ESOA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于白鲨优化算法WSO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
评论0