function main()
%处理cameraman.tif
I=imread('cameraman.tif'); %读入图像
Iseg=otsuf(I); %用otsuf程序分割
figure
subplot(121)
imshow(I) %绘制原图
subplot(122)
imshow(Iseg) %绘制分割后的图
%处理circuit.tif
I=imread('circuit.tif');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
%处理coins.png
I=imread('coins.png');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
%处理lena.jpg
I=imread('lena.jpg');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
%处理liftingbody.png
I=imread('liftingbody.png');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
%处理rice.png
I=imread('rice.png');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
%处理westconcordorthophoto.png
I=imread('westconcordorthophoto.png');
Iseg=otsuf(I);
figure
subplot(121)
imshow(I)
subplot(122)
imshow(Iseg)
msgbox('MATLAB编程答疑,请加QQ: 1530497909','MATLAB答疑','help')
web http://url.cn/TKcdXk -browser
end
function [Iseg,sep] = otsuf(I,n)
%OTSU Gray-level image segmentation using Otsu's method.
% Iseg = OTSU(I,n) computes a segmented image (Iseg) containing n classes
% by means of Otsu's n-thresholding method (Otsu N, A Threshold Selection
% Method from Gray-Level Histograms, IEEE Trans. Syst. Man Cybern.
% 9:62-66;1979). Thresholds are computed to maximize a separability
% criterion of the resultant classes in gray levels.
%
% Iseg = OTSU(I) uses n=2 (default value). The output Iseg is an unsigned
% 8-bit integer image (i.e. of class uint8).
%
% [Iseg,sep] = OTSU(I,n) also returns the value (sep) of the separability
% criterion within the range [0 1]. Zero is obtained only with images
% having less than n gray level, whereas one (optimal value) is obtained
% only with n-valued images.
%
% Notes:
% -----
% It should be noticed that the thresholds generally become less credible
% as the number of classes (n) to be separated increases (see Otsu's
% paper for more details).
%
% Be careful! The OTSU function works with I of any size. An RGB image I
% will be thus considered as a gray-level 3D-array!
%
% Example:
% -------
% load clown
% subplot(221)
% X = ind2gray(X,map);
% imshow(X)
% title('Original','FontWeight','bold')
% for n = 2:4
% Iseg = otsu(X,n);
% subplot(2,2,n)
% imshow(Iseg)
% title(['n = ' int2str(n)],'FontWeight','bold')
% end
%
% -- Damien Garcia -- 2007/08, revised 2009/03
error(nargchk(1,2,nargin))
%% Checking n (number of classes)
if nargin==1
n = 2;
elseif n==1;
Iseg = NaN(size(I));
sep = 0;
return
elseif n~=abs(round(n)) || n==0
error('MATLAB:otsu:WrongNValue',...
'n must be a strictly positive integer!')
elseif n>255
n = 255;
warning('MATLAB:otsu:TooHighN',...
'n is too high. n value has been changed to 255.')
end
%% Probability distribution
I = single(I);
unI = sort(unique(I));
nbins = min(length(unI),256);
if nbins==n
Iseg = ones(size(I));
graycol = linspace(0,1,n);
for i = 1:n-1, Iseg(I==unI(i)) = graycol(i); end
sep = 1;
return
elseif nbins<n
Iseg = NaN(size(I));
sep = 0;
return
elseif nbins<256
[histo,pixval] = hist(I(:),unI);
else
[histo,pixval] = hist(I(:),256);
end
P = histo/sum(histo);
clear unI
%% Zeroth- and first-order cumulative moments
w = cumsum(P);
mu = cumsum((1:nbins).*P);
%% Maximal sigmaB^2 and Segmented image
if n==2
sigma2B =...
(mu(end)*w(2:end-1)-mu(2:end-1)).^2./w(2:end-1)./(1-w(2:end-1));
[maxsig,k] = max(sigma2B);
% segmented image
Iseg = ones(size(I),'uint8')*255;
Iseg(I<=pixval(k+1)) = 0;
% separability criterion
sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);
elseif n==3
w0 = w;
w2 = fliplr(cumsum(fliplr(P)));
[w0,w2] = ndgrid(w0,w2);
mu0 = mu./w;
mu2 = fliplr(cumsum(fliplr((1:nbins).*P))./cumsum(fliplr(P)));
[mu0,mu2] = ndgrid(mu0,mu2);
w1 = 1-w0-w2;
w1(w1<=0) = NaN;
sigma2B =...
w0.*(mu0-mu(end)).^2 + w2.*(mu2-mu(end)).^2 +...
(w0.*(mu0-mu(end)) + w2.*(mu2-mu(end))).^2./w1;
sigma2B(isnan(sigma2B)) = 0; % zeroing if k1 >= k2
[maxsig,k] = max(sigma2B(:));
[k1,k2] = ind2sub([nbins nbins],k);
% segmented image
Iseg = ones(size(I),'uint8')*255;
Iseg(I<=pixval(k1)) = 0;
Iseg(I>pixval(k1) & I<=pixval(k2)) = round(pixval(k2)/max(pixval)*255);
% separability criterion
sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);
else
k0 = linspace(0,1,n+1); k0 = k0(2:n);
[k,y] = fminsearch(@sig_func,k0);
k = round(k*(nbins-1)+1);
% segmented image
Iseg = ones(size(I),'uint8')*255;
Iseg(I<=pixval(k(1))) = 0;
maxpixval = max(pixval);
for i = 1:n-2
Iseg(I>pixval(k(i)) & I<=pixval(k(i+1))) =...
round(pixval(k(i+1))/maxpixval*255);
end
% separability criterion
sep = 1-y;
end
%% Function to be minimized if n>=4
function y = sig_func(k)
muT = sum((1:nbins).*P);
sigma2T = sum(((1:nbins)-muT).^2.*P);
k = round(k*(nbins-1)+1);
k = sort(k);
if any(k<1 | k>nbins), y = 1; return, end
k = [0 k nbins];
sigma2B = 0;
for j = 1:n
wj = sum(P(k(j)+1:k(j+1)));
if wj==0, y = 1; return, end
muj = sum((k(j)+1:k(j+1)).*P(k(j)+1:k(j+1)))/wj;
sigma2B = sigma2B + wj*(muj-muT)^2;
end
y = 1-sigma2B/sigma2T; % within the range [0 1]
end
end
阿里matlab建模师
- 粉丝: 4256
- 资源: 2843
最新资源
- 市建设工程安全生产标准化管理优良工地申报表.docx
- 特殊建设工程消防验收现场评定(其他建设工程消防验收备案现场检查)监督记录表.docx
- 提前报废老旧营运柴油货车补贴标准、新购营运货车补贴标准表.docx
- 基于鸟鸣声识别的鸟类分类系统项目源代码全套技术资料.zip
- 解析XML文件,使用ElementTree模块,并根据流程图设计合适的数据结构保存解析结果-使用Python ElementTree模块解析XML文件并设计数据结构-含源代码及解释
- 膝关节功能丧失程度评定表.docx
- 外出务工就业交通补助申报表.docx
- 腕关节功能丧失程度评定表.docx
- 现场评定检查表—— 防爆.docx
- 现场评定检查表—— 防火分隔、固定窗.docx
- 现场评定检查表——安全疏散.docx
- 现场评定检查表——建筑类别与耐火等级表.docx
- 现场评定检查表——建筑灭火器.docx
- 现场评定检查表--泡沫灭火系统.docx
- 现场评定检查表——平面布置.docx
- 现场评定检查表——建筑内部装修防火.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈