function [Q,cnt] = quad_m(funfcn,a,b,tol,trace,varargin)
%QUAD Numerically evaluate integral, low order method.
% Q = QUAD('F',A,B) approximates the integral of F(X) from A to B to
% within a relative error of 1e-3 using an adaptive recursive
% Simpson's rule. 'F' is a string containing the name of the
% function. Function F must return a vector of output values if given
% a vector of input values. Q = Inf is returned if an excessive
% recursion level is reached, indicating a possibly singular integral.
%
% Q = QUAD('F',A,B,TOL) integrates to a relative error of TOL. Use
% a two element tolerance, TOL = [rel_tol abs_tol], to specify a
% combination of relative and absolute error.
%
% Q = QUAD('F',A,B,TOL,TRACE) integrates to a relative error of TOL and
% for non-zero TRACE traces the function evaluations with a point plot
% of the integrand.
%
% Q = QUAD('F',A,B,TOL,TRACE,P1,P2,...) allows parameters P1, P2, ...
% to be passed directly to function F: G = F(X,P1,P2,...).
% To use default values for TOL or TRACE, you may pass in the empty
% matrix ([]).
%
% See also QUAD8, DBLQUAD.
% C.B. Moler, 3-22-87.
% Copyright (c) 1984-98 by The MathWorks, Inc.
% $Revision: 5.16 $ $Date: 1997/12/02 15:35:23 $
% [Q,cnt] = quad(F,a,b,tol) also returns a function evaluation count.
if nargin < 4, tol = [1.e-3 0]; trace = 0; end
if nargin < 5, trace = 0; end
c = (a + b)/2;
if isempty(tol), tol = [1.e-3 0]; end
if length(tol)==1, tol = [tol 0]; end
if isempty(trace), trace = 0; end
% Top level initialization
x = [a b c a:(b-a)/10:b];
y = feval(funfcn,x,varargin{:});
fa = y(1);
fb = y(2);
fc = y(3);
if trace
lims = [min(x) max(x) min(y) max(y)];
if ~isreal(y)
lims(3) = min(min(real(y)),min(imag(y)));
lims(4) = max(max(real(y)),max(imag(y)));
end
ind = find(~isfinite(lims));
if ~isempty(ind)
[mind,nind] = size(ind);
lims(ind) = 1.e30*(-ones(mind,nind) .^ rem(ind,2));
end
axis(lims);
plot([c b],[fc fb],'.')
hold on
if ~isreal(y)
plot([c b],imag([fc fb]),'+')
end
drawnow
end
lev = 1;
% Adaptive, recursive Simpson's quadrature
if ~isreal(y)
Q0 = 1e30;
else
Q0 = inf;
end
recur_lev_excess = 0;
[Q,cnt,recur_lev_excess] = ...
quadstp(funfcn,a,b,tol,lev,fa,fc,fb,Q0,trace,recur_lev_excess,varargin{:});
cnt = cnt + 3;
if trace
hold off
axis('auto');
end
if (recur_lev_excess > 1)
warning(sprintf('Recursion level limit reached %d times.', ...
recur_lev_excess ))
end
%------------------------------------------------------------
function [Q,cnt,recur_lev_excess] = quadstp(FunFcn,a,b,tol,lev,fa,fc,fb,Q0,trace,recur_lev_excess,varargin)
%QUADSTP Recursive function used by QUAD.
% [Q,cnt] = quadstp(F,a,b,tol,lev,fa,fc,fb,Q0) tries to
% approximate the integral of f(x) from a to b to within a
% relative error of tol. F is a string containing the name
% of f. The remaining arguments are generated by quad or by
% the recursion. lev is the recursion level.
% fa = f(a). fc = f((a+b)/2). fb = f(b).
% Q0 is an approximate value of the integral.
% See also QUAD and QUAD8.
% C.B. Moler, 3-22-87.
LEVMAX = 100;
if lev > LEVMAX
% Print warning the first time the recursion level is exceeded.
if ~recur_lev_excess
% warning('Recursion level limit reached in quad. Singularity likely.')
recur_lev_excess = 1;
else
recur_lev_excess = recur_lev_excess + 1;
end
Q = Q0;
cnt = 0;
c = (a + b)/2;
if trace
yc = feval(FunFcn,c,varargin{:});
plot(c,yc,'.');
if ~isreal(yc)
plot(c,imag(yc),'+');
end
drawnow
end
else
% Evaluate function at midpoints of left and right half intervals.
h = b - a;
c = (a + b)/2;
x = [a+h/4, b-h/4];
f = feval(FunFcn,x,varargin{:});
if trace
plot(x,f,'.');
if ~isreal(f)
plot(x,imag(f),'+')
end
drawnow
end
cnt = 2;
% Simpson's rule for half intervals.
Q1 = h*(fa + 4*f(1) + fc)/12;
Q2 = h*(fc + 4*f(2) + fb)/12;
Q = Q1 + Q2;
% Recursively refine approximations.
if abs(Q - Q0) > tol(1)*abs(Q) + tol(2);
[Q1,cnt1,recur_lev_excess] = quadstp(FunFcn,a,c,tol/2,lev+1,fa,f(1),fc,Q1,trace,recur_lev_excess,varargin{:});
[Q2,cnt2,recur_lev_excess] = quadstp(FunFcn,c,b,tol/2,lev+1,fc,f(2),fb,Q2,trace,recur_lev_excess,varargin{:});
Q = Q1 + Q2;
cnt = cnt + cnt1 + cnt2;
end
end
阿里matlab建模师
- 粉丝: 4341
- 资源: 2850
最新资源
- HAL库驱动TCS3200颜色识别模块-STM32F103ZET6
- boost电路参数详细计算.xls
- HTML+CSS+JavaScript实现带飘雪花效果的圣诞树
- 实习实训大作业-基于python的电商产品评论数据情感分析源码+说明(高分项目)
- HTML与CSS创建圣诞树及动态雪花效果
- 数据结构与算法:Python递归实现计算二叉树的深度
- 前端开发中的平安夜贺卡HTML代码示例
- C# WPF一个测弹力,显示曲线的工具 .zip
- 本地磁盘学习使用仅供参考
- 本地磁盘学习使用仅供参考
- 基于Kaggle数据集的泰坦尼克号幸存者预测机器学习实践
- 本地磁盘学习使用仅供参考
- 视频游戏人物检测35-YOLO(v5至v9)、COCO、CreateML、Paligemma、TFRecord数据集合集.rar
- 本地磁盘学习使用仅供参考
- 本地磁盘学习使用仅供参考
- HTML、CSS与JavaScript实现圣诞节雪花飘落效果
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
- 1
- 2
- 3
- 4
- 5
前往页