## YOLOV7-OBB:You Only Look Once OBB旋转目标检测模型在pytorch当中的实现
---
## 目录
1. [仓库更新 Top News](#仓库更新)
2. [相关仓库 Related code](#相关仓库)
3. [性能情况 Performance](#性能情况)
4. [所需环境 Environment](#所需环境)
5. [文件下载 Download](#文件下载)
6. [训练步骤 How2train](#训练步骤)
7. [预测步骤 How2predict](#预测步骤)
8. [评估步骤 How2eval](#评估步骤)
9. [参考资料 Reference](#Reference)
## Top News
**`2023-02`**:**仓库创建,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪、支持多GPU训练、支持各个种类目标数量计算、支持heatmap、支持EMA。**
## 相关仓库
| 目标检测模型 | 路径 |
| :----- | :----- |
YoloV7-OBB | https://github.com/Egrt/yolov7-obb
YoloV7-Tiny-OBB | https://github.com/Egrt/yolov7-tiny-obb
## 性能情况
| 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5 |
| :-----: | :------: | :------: | :------: | :------: |
| SSDD | [yolov7_obb_ssdd.pth](https://github.com/Egrt/yolov7-obb/releases/download/V1.0.0/yolov7_obb_ssdd.pth) | SSDD-Val | 640x640 | 95.22
### 预测结果展示
![预测结果](img/test.jpg)
## 所需环境
torch==1.10.1
torchvision==0.11.2
为了使用amp混合精度,推荐使用torch1.7.1以上的版本。
## 文件下载
SSDD数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/1Lpg28ZvMSgNXq00abHMZ5Q
提取码: 2021
## 训练步骤
### a、训练VOC07+12数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录**
2. 数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
生成的数据集格式为image_path, x1, y1, x2, y2, x3, y3, x4, y4(polygon), class。
3. 开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
### b、训练自己的数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要自己制作好数据集,**
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
2. 数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
```python
cat
dog
...
```
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
3. 开始网络训练
**训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。**
**classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!**
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
## 预测步骤
### a、使用预训练权重
1. 下载完库后解压,在百度网盘下载权值,放入model_data,运行predict.py,输入
```python
img/street.jpg
```
2. 在predict.py里面进行设置可以进行fps测试和video视频检测。
### b、使用自己训练的权重
1. 按照训练步骤训练。
2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
#
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolov7_weights.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件,一般不修改。
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
#---------------------------------------------------------------------#
"anchors_path" : 'model_data/yolo_anchors.txt',
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [640, 640],
#------------------------------------------------------#
# 所使用到的yolov7的版本,本仓库一共提供两个:
# l : 对应yolov7
# x : 对应yolov7_x
#------------------------------------------------------#
"phi" : 'l',
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : True,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
```
3. 运行predict.py,输入
```python
img/street.jpg
```
4. 在predict.py里面进行设
不会仰游的河马君
- 粉丝: 5503
- 资源: 7711
最新资源
- 三菱电梯主板地址表参数 三菱电梯地址码, 778主板地址参数, 758电梯主板地址参数
- 藏区特产销售平台--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 洞见研报亚太卫星宽带(卫星宽带通信服务商,亚太卫星宽带通信(深圳)有限公司)创投信息
- 在线学籍管理系统--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- “共享书角”图书借还管理系统--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 职称评审管理系统-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 智慧党建系统设计与实现_1i659--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- java学习平台--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 洞见研报云蝠智能(语音大数据及智能化客服解决方案供应商,南京星蝠科技有限公司)创投信息
- 基于labview的双音多频系统设计
- 基于Java的超市进销存系统--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 智慧学生校舍系统--论文-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 光伏发电并网系统 matlab simulink整体仿真,波形如图,光伏板,MPPT控制boost,坐标变,锁相环,dq功率控制+解耦控制+电流内环电压外环,pwm调制,滤波器,此链接有2018a和
- 自习室预订系统-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- pytorch3D 为使用pytorch进行 3D 计算机视觉研究提供了高效、可重复使用的组件
- aarch64汇编指令集介绍
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈