数据分析模型有不同的特点和技术,值得注意的是,大多数高级的模型都基于几个基本原理。
当你想开启数据科学家的职业生涯时,应该学习哪些模型呢?本文中我们介绍了6个在业界广泛使用的
模型。
目前很多舆论对机器学习和人工智过度追捧,当你想建立预测模型时,这会让给你不禁思考,是不是只
有很高阶的技术才能解决问题。
但当你自己试着编程后才会发现,事实实际并非如此。作为一名数据工作者,你面临的很多问题都需要
将几个模型组合起来解决,而且其中大部分模型已经出现了很长时间。
而且,即使你要使用先进的模型来解决问题,学习基本原理会让你在大多数情况中占得先机。与此同
时,了解这些基础模型的优缺点将帮助你在数据分析项目取得成功。
下面我们就来具体看看6个数据分析师都应该掌握的预测模型吧。
01、线性回归
线性回归比较经典的模型之一,英国科学家Francis Galton在19世纪就使用了 "回归 "一词,并且仍然是
使用数据表示线性关系最有效的模型之一。
线性回归是世界范围内,许多计量经济学课程的主要内容。学习该线性模型将让你在解决回归问题有方
向,并了解如何用数学知识来预测现象。
学习线性回归还有其他好处,尤其是当你学习了两种可以获得最佳性能的方法时: