# Table of Contents
* [Darknet Object Detection Framework and YOLO](#darknet-object-detection-framework-and-yolo)
* [Papers](#papers)
* [General Information](#general-information)
* [Darknet Version](#darknet-version)
* [MSCOCO Pre-trained Weights](#mscoco-pre-trained-weights)
* [Building](#building)
* [Google Colab](#google-colab)
* [WSL](#wsl)
* [Linux CMake Method](#linux-cmake-method)
* [Windows CMake Method](#windows-cmake-method)
* [Using Darknet](#using-darknet)
* [CLI](#cli)
* [Training](#training)
* [Other Tools and Links](#other-tools-and-links)
* [Roadmap](#roadmap)
* [Short-term goals](#short-term-goals)
* [Mid-term goals](#mid-term-goals)
* [Long-term goals](#long-term-goals)
# Darknet Object Detection Framework and YOLO
![darknet and hank.ai logos](artwork/darknet_and_hank_ai_logos.png)
Darknet is an open source neural network framework written in C, C++, and CUDA.
YOLO (You Only Look Once) is a state-of-the-art, real-time, object detection system, which runs in the Darknet framework.
* Read how **[Hank.ai is helping the Darknet/YOLO community](https://hank.ai/darknet-welcomes-hank-ai-as-official-sponsor-and-commercial-entity/)**
* Announcing **[Darknet V3 "Jazz"](https://hank.ai/announcing-darknet-v3-a-quantum-leap-in-open-source-object-detection/)**
* See the **[Darknet/YOLO web site](https://darknetcv.ai/)**
* Please read through the **[Darknet/YOLO FAQ](https://www.ccoderun.ca/programming/darknet_faq/)**
* Join the **[Darknet/YOLO discord server](https://discord.gg/zSq8rtW)**
# Papers
* Paper **[YOLOv7](https://arxiv.org/abs/2207.02696)**
* Paper **[Scaled-YOLOv4](https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Scaled-YOLOv4_Scaling_Cross_Stage_Partial_Network_CVPR_2021_paper.html)**
* Paper **[YOLOv4](https://arxiv.org/abs/2004.10934)**
* Paper **[YOLOv3](https://arxiv.org/abs/1804.02767)**
# General Information
The Darknet/YOLO framework continues to be both **faster** and **more accurate** than other frameworks and versions of YOLO.
This framework is both **completely free** and **open source**. You can incorporate Darknet/YOLO into existing projects and
products -- including commercial ones -- without a license or paying a fee.
Darknet V3 ("Jazz") released in October 2024 can accurately run the LEGO dataset videos at up to **1000 FPS** when using
a NVIDIA RTX 3090 GPU, meaning each video frame is read, resized, and processed by Darknet/YOLO in 1 millisecond or less.
Please join the Darknet/YOLO Discord server if you need help or you want to discuss Darknet/YOLO: https://discord.gg/zSq8rtW
The CPU version of Darknet/YOLO can run on simple devices such as Raspberry Pi, cloud & colab servers, desktops,
laptops, and high-end training rigs. The GPU version of Darknet/YOLO requires a CUDA-capable GPU from NVIDIA.
Darknet/YOLO is known to work on Linux, Windows, and Mac. See the [building instructions](#building) below.
## Darknet Version
* The original Darknet tool written by Joseph Redmon in 2013-2017 did not have a version number. We consider this version 0.x.
* The next popular Darknet repo maintained by Alexey Bochkovskiy between 2017-2021 also did not have a version number. We consider this version 1.x.
* The Darknet repo sponsored by Hank.ai and maintained by Stéphane Charette starting in 2023 was the first one with a `version` command. From 2023 until late 2024, it returned version 2.x "OAK".
* The goal was to try and break as little of the existing functionality while getting familiar with the codebase.
* Re-wrote the build steps so we have 1 unified way to build using CMake on both Windows and Linux.
* Converted the codebase to use the C++ compiler.
* Enhanced chart.png while training.
* Bug fixes and performance-related optimizations, mostly related to cutting down the time it takes to train a network.
* The last branch of this codebase is version 2.1 in the `v2` branch.
* The next phase of development started in mid-2024 and was released in October 2024. The `version` command now returns 3.x "JAZZ".
* Removed many old and unmaintained commands.
* You can always do a checkout of the previous `v2` branch if you need to run one of these commands. Let us know so we can investigate adding back any missing commands.
* Many performance optimizations, both when training and during inference.
* Legacy C API was modified; applications that use the original Darknet API will need minor modifications: https://darknetcv.ai/api/api.html
* New Darknet V3 C and C++ API: https://darknetcv.ai/api/api.html
* New apps and sample code in `src-examples`: https://darknetcv.ai/api/files.html
# MSCOCO Pre-trained Weights
Several popular versions of YOLO were pre-trained for convenience on the [MSCOCO dataset](https://cocodataset.org/). This dataset has 80 classes, which can be seen in the text file [`cfg/coco.names`](cfg/coco.names).
> There are several other simpler datasets and pre-trained weights available for testing Darknet/YOLO, such as LEGO Gears and Rolodex. See <a target="_blank" href="https://www.ccoderun.ca/programming/yolo_faq/#datasets">the Darknet/YOLO FAQ</a> for details.
The MSCOCO pre-trained weights can be downloaded from several different locations, and are also available for download from this repo:
* YOLOv2, November 2016
* [YOLOv2-tiny](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807469361)
* [YOLOv2-full](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807478865)
* YOLOv3, May 2018
* [YOLOv3-tiny](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807479419)
* [YOLOv3-full](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807480139)
* YOLOv4, May 2020
* [YOLOv4-tiny](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807480542)
* [YOLOv4-full](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807481315)
* YOLOv7, August 2022
* [YOLOv7-tiny](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807483279)
* [YOLOv7-full](https://github.com/hank-ai/darknet/issues/21#issuecomment-1807483787)
The MSCOCO pre-trained weights are provided for demo-purpose only. The corresponding `.cfg` and `.names` files for MSCOCO are in [the cfg directory](cfg/). Example commands:
```sh
wget --no-clobber https://github.com/hank-ai/darknet/releases/download/v2.0/yolov4-tiny.weights
darknet_02_display_annotated_images coco.names yolov4-tiny.cfg yolov4-tiny.weights image1.jpg
darknet_03_display_videos coco.names yolov4-tiny.cfg yolov4-tiny.weights video1.avi
DarkHelp coco.names yolov4-tiny.cfg yolov4-tiny.weights image1.jpg
DarkHelp coco.names yolov4-tiny.cfg yolov4-tiny.weights video1.avi
```
Note that people are expected to [train their own networks](#training). MSCOCO is normally used to confirm that everything is working correctly.
# Building
The various build methods available in the past (pre-2023) have been merged together into a single unified solution. Darknet requires C++17 or newer, OpenCV, and uses CMake to generate the necessary project files.
**You do not need to know C++ to build, install, nor run Darknet/YOLO, the same way you don't need to be a mechanic to drive a car.**
* [Google Colab](#google-colab)
* [WSL](#wsl)
* [Linux](#linux-cmake-method)
* [Windows](#windows-cmake-method)
**Beware if you are following old tutorials with more complicated build steps, or build steps that don't match what is in this readme.** The new build steps as described below started in August 2023.
Software developers are encouraged to visit https://darknetcv.ai/ to get information on the internals of the Darknet/YOLO object detection framework.
## Google Colab
The Google Colab instructions are the same as the [Linux](#linux-cmake-method) instructions. Several Jupyter notebooks are available showing how to do certain tasks, such as training a new network.
See the notebooks in the `colab` subdirectory, and/or follow the Linux instructions below.
## WSL
If you have a modern version of
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
目录Darknet 对象检测框架和 YOLO文件一般信息暗网版本MSCOCO 预训练权重建筑谷歌Colab西弗吉尼亚海岸Linux CMake 方法Windows CMake 方法使用暗网命令行界面训练其他工具和链接路线图短期目标中期目标长期目标Darknet 对象检测框架和 YOLODarknet 是一个用 C、C++ 和 CUDA 编写的开源神经网络框架。YOLO(You Only Look Once)是一种最先进的实时物体检测系统,运行在 Darknet 框架中。了解Hank.ai 如何帮助 Darknet/YOLO 社区宣布Darknet V3“爵士乐”请参阅Darknet/YOLO 网站请阅读Darknet/YOLO 常见问题解答加入Darknet/YOLO discord 服务器文件论文YOLOv7论文Scaled-YOLOv4论文YOLOv4论文YOLOv3一般信息Darknet/YOLO 框架比其他框架和版本的 YOLO更快、更准确。该框架完全免费且开源。您可以将 Darknet/YOLO 纳
资源推荐
资源详情
资源评论
收起资源包目录
Darknet,YOLO 对象检测框架.zip (294个子文件)
getopt.c 13KB
gettimeofday.c 1KB
cspx-p7-mish_hp.cfg 30KB
cspx-p7-mish.cfg 27KB
yolov4-p6.cfg 24KB
resnet152_trident.cfg 23KB
densenet201.cfg 19KB
yolov4-p5-frozen.cfg 19KB
yolov4-p5.cfg 19KB
yolov4-csp-x-swish.cfg 16KB
yolov4-csp-x-swish-frozen.cfg 16KB
yolov4-csp-x-mish.cfg 16KB
resnext152-32x4d.cfg 16KB
resnet152.cfg 15KB
yolov4x-mish.cfg 15KB
cspx-p7-mish-omega.cfg 15KB
yolov4-sam-mish-csp-reorg-bfm.cfg 14KB
yolov4-csp-swish.cfg 14KB
yolov4-csp.cfg 13KB
efficientnet-lite3.cfg 12KB
yolov4_new.cfg 12KB
enet-coco.cfg 12KB
cd53paspp-gamma.cfg 12KB
yolov4-custom.cfg 12KB
yolov4.cfg 12KB
yolov7x.cfg 12KB
efficientnet_b0.cfg 11KB
csresnext50-panet-spp-original-optimal.cfg 11KB
yolov7.cfg 11KB
csresnext50-panet-spp.cfg 10KB
yolov3_5l.cfg 10KB
resnet101.cfg 10KB
yolov4-csp-s-mish.cfg 9KB
yolov3-voc.yolov3-giou-40.cfg 8KB
Gaussian_yolov3_BDD.cfg 8KB
yolov3.coco-giou-12.cfg 8KB
yolov3-spp.cfg 8KB
yolov3-openimages.cfg 8KB
yolov3.cfg 8KB
yolov3-voc.cfg 8KB
csdarknet53-omega.cfg 8KB
yolov7-tiny.cfg 7KB
darknet53_448_xnor.cfg 6KB
darknet53.cfg 6KB
resnet50.cfg 5KB
yolov4-tiny_contrastive.cfg 5KB
yolov4-tiny-3l.cfg 4KB
yolov4-tiny.cfg 3KB
yolov4-tiny-custom.cfg 3KB
yolov2.cfg 3KB
yolo.cfg 3KB
yolov2-voc.cfg 3KB
yolo-voc.cfg 3KB
yolo.train.cfg 3KB
yolo.cfg 3KB
yolo-coco.cfg 3KB
yolo2.cfg 3KB
yolo.2.0.cfg 3KB
yolo-voc.2.0.cfg 2KB
yolov3-tiny_3l.cfg 2KB
yolo-small.cfg 2KB
yolo9000.cfg 2KB
yolov3-tiny_occlusion_track.cfg 2KB
extraction22k.cfg 2KB
extraction.cfg 2KB
yolov3-tiny-prn.cfg 2KB
darknet19_448.cfg 2KB
yolov3-tiny_xnor.cfg 2KB
darknet19.cfg 2KB
yolov3-tiny.cfg 2KB
yolov3-tiny_obj.cfg 2KB
strided.cfg 2KB
tiny.cfg 2KB
extraction.conv.cfg 2KB
tiny-yolo_xnor.cfg 2KB
yolov2-tiny.cfg 1KB
yolov2-tiny-voc.cfg 1KB
tiny-yolo.cfg 1KB
tiny-yolo-voc.cfg 1KB
vgg-16.cfg 1KB
xyolo.test.cfg 1KB
go.test.cfg 1KB
tiny-coco.cfg 1KB
tiny-yolo.cfg 1KB
cifar.cfg 1KB
cifar.test.cfg 1KB
t1.test.cfg 1KB
vgg-conv.cfg 1KB
jnet-conv.cfg 1KB
darknet.cfg 1KB
alexnet.cfg 879B
crnn.train.cfg 535B
rnn.train.cfg 437B
rnn.cfg 433B
writing.cfg 400B
lstm.train.cfg 364B
gru.cfg 324B
CM_source.cmake 7KB
CM_dependencies.cmake 6KB
CM_package.cmake 1KB
共 294 条
- 1
- 2
- 3
资源评论
徐浪老师
- 粉丝: 8494
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Java+Swing+Mysql的物资信息管理系统源码+文档说明(高分项目)
- (175345440)校园社区跑腿小程序源码.rar
- (175860602)基于51单片机的LCD1602矩阵键盘密码锁(proteus仿真设计)
- (176103642)「数学建模MATLAB必备程序源代码」方程求根源代码
- MATLAB代码:基于列约束生成法CCG的两阶段鲁棒问题求解 关键词:两阶段鲁棒 列约束生成法 CCG算法 鲁棒优化 参考文档:Solving two-stage robust optimizati
- (176167648)基于php+mysql的简易学生信息管理系统.zip
- 20232319 陈正勇.zip
- (176423806)Matlab与数学建模.doc
- (176962054)微同商城开源微信小程序商城(前后端开源:uniapp+Java) 快速搭建一个属于自己的微信小程序商城
- (177391846)毕业设计基于SpringBoot的在线拍卖系统源码含文档
- 酒店预订数据集.zip
- 基于粒子群算法的配电网无功优化 基于IEEE33节点配电网,以无功补偿器的接入位置和容量作为优化变量,以牛拉法进行潮流计算,以配电网网损最小为优化目标,通过优化求解,得到最佳接入位置和容量,优化结果如
- (177400018)pl2303USB转串口线驱动程序.zip
- (177488642)兼容在线/离线身份证读卡插件Windows PC 端SDK
- 中移M5311模块MQTT协议连接阿里云物联网平台(干货)
- (177506410)PHP学生管理系统 .zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功