# DB-GPT: Revolutionizing Database Interactions with Private LLM Technology
<p align="left">
<img src="./assets/LOGO.png" width="100%" />
</p>
<div align="center">
<p>
<a href="https://github.com/eosphoros-ai/DB-GPT">
<img alt="stars" src="https://img.shields.io/github/stars/eosphoros-ai/db-gpt?style=social" />
</a>
<a href="https://github.com/eosphoros-ai/DB-GPT">
<img alt="forks" src="https://img.shields.io/github/forks/eosphoros-ai/db-gpt?style=social" />
</a>
<a href="https://opensource.org/licenses/MIT">
<img alt="License: MIT" src="https://img.shields.io/badge/License-MIT-yellow.svg" />
</a>
<a href="https://github.com/eosphoros-ai/DB-GPT/releases">
<img alt="Release Notes" src="https://img.shields.io/github/release/eosphoros-ai/DB-GPT" />
</a>
<a href="https://github.com/eosphoros-ai/DB-GPT/issues">
<img alt="Open Issues" src="https://img.shields.io/github/issues-raw/eosphoros-ai/DB-GPT" />
</a>
<a href="https://discord.gg/7uQnPuveTY">
<img alt="Discord" src="https://dcbadge.vercel.app/api/server/7uQnPuveTY?compact=true&style=flat" />
</a>
<a href="https://join.slack.com/t/slack-inu2564/shared_invite/zt-29rcnyw2b-N~ubOD9kFc7b7MDOAM1otA">
<img alt="Slack" src="https://badgen.net/badge/Slack/Join%20DB-GPT/0abd59?icon=slack" />
</a>
<a href="https://codespaces.new/eosphoros-ai/DB-GPT">
<img alt="Open in GitHub Codespaces" src="https://github.com/codespaces/badge.svg" />
</a>
</p>
[**简体中文**](README.zh.md) | [**Discord**](https://discord.gg/7uQnPuveTY) | [**Documents**](https://docs.dbgpt.site) | [**微信**](https://github.com/eosphoros-ai/DB-GPT/blob/main/README.zh.md#%E8%81%94%E7%B3%BB%E6%88%91%E4%BB%AC) | [**Community**](https://github.com/eosphoros-ai/community) | [**Paper**](https://arxiv.org/pdf/2312.17449.pdf)
</div>
## What is DB-GPT?
DB-GPT is an open-source, data-domain large model framework. Its purpose is to build the infrastructure for the large model domain by developing a variety of technical capabilities, including multi-model management, Text2SQL performance optimization, RAG framework and optimization, and Multi-Agents framework collaboration. These capabilities aim to simplify and facilitate the construction of large model applications around databases.
In the Data 3.0 era, based on models and databases, enterprises and developers can build their own bespoke applications with less code.
### Data Agents
![chat_excel](https://github.com/eosphoros-ai/DB-GPT/assets/17919400/03d67da4-b9b9-4df3-8890-176a0941dab8)
![data agents](https://github.com/eosphoros-ai/DB-GPT/assets/17919400/ced393b4-9180-437a-90c5-b43633cda8cb)
## Contents
- [Introduction](#introduction)
- [Install](#install)
- [Features](#features)
- [Contribution](#contribution)
- [Contact](#contact-information)
## Introduction
The architecture of DB-GPT is shown in the following figure:
<p align="center">
<img src="./assets/dbgpt.png" width="800" />
</p>
The core capabilities include the following parts:
- **RAG (Retrieval Augmented Generation)**: RAG is currently the most practically implemented and urgently needed domain. DB-GPT has already implemented a framework based on RAG, allowing users to build knowledge-based applications using the RAG capabilities of DB-GPT.
- **GBI (Generative Business Intelligence)**: Generative BI is one of the core capabilities of the DB-GPT project, providing the foundational data intelligence technology to build enterprise report analysis and business insights.
- **Fine-tuning Framework**: Model fine-tuning is an indispensable capability for any enterprise to implement in vertical and niche domains. DB-GPT provides a complete fine-tuning framework that integrates seamlessly with the DB-GPT project. In recent fine-tuning efforts, an accuracy rate based on the Spider dataset has been achieved at 82.5%.
- **Data-Driven Multi-Agents Framework**: DB-GPT offers a data-driven self-evolving fine-tuning framework, aiming to continuously make decisions and execute based on data.
- **Data Factory**: The Data Factory is mainly about cleaning and processing trustworthy knowledge and data in the era of large models.
- **Data Sources**: Integrating various data sources to seamlessly connect production business data to the core capabilities of DB-GPT.
### SubModule
- [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub) Text-to-SQL workflow with high performance by applying Supervised Fine-Tuning (SFT) on Large Language Models (LLMs).
#### Text2SQL Finetune
- support llms
- [x] LLaMA
- [x] LLaMA-2
- [x] BLOOM
- [x] BLOOMZ
- [x] Falcon
- [x] Baichuan
- [x] Baichuan2
- [x] InternLM
- [x] Qwen
- [x] XVERSE
- [x] ChatGLM2
- SFT Accuracy
As of October 10, 2023, through the fine-tuning of an open-source model with 13 billion parameters using this project, we have achieved execution accuracy on the Spider dataset that surpasses even GPT-4!
[More Information about Text2SQL finetune](https://github.com/eosphoros-ai/DB-GPT-Hub)
- [DB-GPT-Plugins](https://github.com/eosphoros-ai/DB-GPT-Plugins) DB-GPT Plugins that can run Auto-GPT plugin directly
- [GPT-Vis](https://github.com/eosphoros-ai/GPT-Vis) Visualization protocol
## Install
![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
![macOS](https://img.shields.io/badge/mac%20os-000000?style=for-the-badge&logo=macos&logoColor=F0F0F0)
![Windows](https://img.shields.io/badge/Windows-0078D6?style=for-the-badge&logo=windows&logoColor=white)
[**Usage Tutorial**](http://docs.dbgpt.site/docs/overview)
- [**Install**](http://docs.dbgpt.site/docs/installation)
- [**Quickstart**](http://docs.dbgpt.site/docs/quickstart)
- [**Application**](http://docs.dbgpt.site/docs/operation_manual)
- [**Debugging**](http://docs.dbgpt.site/docs/operation_manual/advanced_tutorial/debugging)
## Features
At present, we have introduced several key features to showcase our current capabilities:
- **Private Domain Q&A & Data Processing**
The DB-GPT project offers a range of functionalities designed to improve knowledge base construction and enable efficient storage and retrieval of both structured and unstructured data. These functionalities include built-in support for uploading multiple file formats, the ability to integrate custom data extraction plug-ins, and unified vector storage and retrieval capabilities for effectively managing large volumes of information.
- **Multi-Data Source & GBI(Generative Business intelligence)**
The DB-GPT project facilitates seamless natural language interaction with diverse data sources, including Excel, databases, and data warehouses. It simplifies the process of querying and retrieving information from these sources, empowering users to engage in intuitive conversations and gain insights. Moreover, DB-GPT supports the generation of analytical reports, providing users with valuable data summaries and interpretations.
- **Multi-Agents&Plugins**
It offers support for custom plug-ins to perform various tasks and natively integrates the Auto-GPT plug-in model. The Agents protocol adheres to the Agent Protocol standard.
- **Automated Fine-tuning text2SQL**
We've also developed an automated fine-tuning lightweight framework centred on large language models (LLMs), Text2SQL datasets, LoRA/QLoRA/Pturning, and other fine-tuning methods. This framework simplifies Text-to-SQL fine-tuning, making it as straightforward as an assembly line process. [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub)
- **SMMF(Service-oriented Multi-model Management Framework)**
We offer extensive model support, including dozens of large language models (LLMs) from both open-source and API agents, such as LLaMA/LLaMA2, Baichuan, ChatGLM, Wenxin, Tongyi, Zhipu, and many more.
没有合适的资源?快使用搜索试试~ 我知道了~
数据交互的本地化GPT模型:DB-GPT
共1298个文件
py:722个
png:133个
tsx:109个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 21 浏览量
2024-02-08
17:49:51
上传
评论
收藏 45.67MB ZIP 举报
温馨提示
它使用本地化的GPT大型模型与数据和环境进行交互。使用此解决方案,您可以放心,没有数据泄露的风险,您的数据是100%私密和安全的。DB-GPT旨在提供用户与模型的交互,而不必依赖外部服务器或云服务,确保数据的隐私和安全性。
资源推荐
资源详情
资源评论
收起资源包目录
数据交互的本地化GPT模型:DB-GPT (1298个子文件)
__PUT_PLUGIN_ZIPS_HERE__ 0B
load_examples.bat 2KB
.isort.cfg 383B
my.cnf 1KB
CODE_OF_CONDUCT 5KB
antd.min.682655f1.css 167KB
antd.min.870425ac.css 129KB
antd.min.d36bae81.css 93KB
antd.min.3afd0f38.css 61KB
antd.min.8c3514d5.css 55KB
antd.min.2fc31812.css 51KB
2df6b89b6fe4db33.css 49KB
antd.min.92762989.css 40KB
antd.min.77ba08ef.css 37KB
93cf7be4620e3238.css 35KB
antd.min.9cde9c45.css 30KB
antd.min.f4c75d8f.css 9KB
b4846eed11c4725f.css 7KB
custom.css 2KB
globals.css 2KB
nprogress.css 651B
index.css 222B
4047a8310a399ceb.css 176B
zx.csv 3KB
dbgpt.db 16KB
Dockerfile 2KB
Dockerfile 1KB
Dockerfile 119B
.dockerignore 47B
.flake8 330B
kbqa.gif 2.84MB
cli_m.gif 2.78MB
start_cli_new.gif 2.65MB
kd_new.gif 2.35MB
chat.gif 2.15MB
data_agents_gif.gif 2.04MB
read_helper.gif 1.87MB
chat.gif 1.73MB
use_vicuna.gif 1.49MB
chat.gif 1.34MB
start_chat.gif 1.26MB
bard.gif 271KB
bard.gif 271KB
.gitignore 2KB
.gitignore 253B
index.html 58KB
index.html 48KB
index.html 47KB
index.html 46KB
index.html 45KB
index.html 44KB
index.html 44KB
index.html 42KB
index.html 42KB
index.html 42KB
404.html 42KB
index.html 42KB
index.html 41KB
esphoros_LOGO.ico 264KB
favicon.ico 4KB
favicon.ico 4KB
MANIFEST.in 59B
alembic.ini 3KB
.mypy.ini 347B
agent_auto_plan_dialogue_example.ipynb 72KB
agent_awel_layout_dialogue_example.ipynb 7KB
get_started.ipynb 6KB
eosphoros.jpeg 5KB
salesforce.jpeg 2KB
salesforce.jpeg 2KB
falcon.jpeg 2KB
falcon.jpeg 2KB
vicuna.jpeg 1KB
vicuna.jpeg 1KB
RAG-IN-ACTION.jpg 1.11MB
wechat.jpg 213KB
knowledge-default.jpg 12KB
knowledge-default.jpg 12KB
llama.jpg 2KB
llama.jpg 2KB
3730.232e5f8e6662c827.js 3.18MB
9341.879a24a2ef534f93.js 1.09MB
_app-aa37f062347068ad.js 657KB
355a6ca7.9ed0e7fb77828d28.js 195KB
bce60fc1-7f6e0057e7aac93c.js 157KB
framework-f37ed5903537ad3a.js 138KB
main-app-b0d43ae7b85d9e82.js 94KB
main-11608b225f7d6953.js 94KB
960de000.bb9af88df54b01a6.js 90KB
polyfills-78c92fac7aa8fdd8.js 89KB
971df74e-7436ff4085ebb785.js 80KB
4733-cc041bf7a3d12e39.js 78KB
5396-3e98ef6b437678bd.js 78KB
29107295-75edf0bf34e24b1e.js 68KB
1009-f20562de52b03b76.js 62KB
75fc9c18-1d6133135d3d283c.js 57KB
8660-25eebcb95c34109b.js 55KB
4553-5a62c446efb06d63.js 45KB
9924-5bce555f07385e1f.js 45KB
4350-1896c46dd5e9afe8.js 43KB
共 1298 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13
资源评论
- bowangphysics2024-07-19感谢资源主的分享,很值得参考学习,资源价值较高,支持!
UnknownToKnown
- 粉丝: 1w+
- 资源: 773
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功