没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
内容概要:本文提出了一种针对V-BLAST系统的新的最小均方误差(MMSE)检测算法。该算法利用通道矩阵的优化QR分解,实现了简单连续检测。文中详细介绍了MMSE-SQRD算法及其与标准MMSE-BLAST算法的性能对比,重点讨论了计算复杂度的显著降低。此外,还介绍了一种后续排序算法(PSA),用于确保最优检测顺序,从而进一步提高性能。 适合人群:通信工程领域的研究人员和工程师,特别是对多天线系统、空间时间架构和信号检测算法感兴趣的读者。 使用场景及目标:适用于无线通信中的多输入多输出(MIMO)系统,尤其是V-BLAST架构下需要高效检测传输信号的场景。目标是提供一种低复杂度且高性能的检测算法,以替代传统的高计算量方法。 其他说明:文章通过对不同检测算法的仿真结果进行了详细比较,验证了MMSE-SQRD算法的有效性和优越性。同时,还探讨了编码传输时性能损失较小的情况,为实际应用提供了理论支持。
资源推荐
资源详情
资源评论
MMSE Extension of V-BLAST based on
Sorted QR Decomposition
Dirk W
¨
ubben, Ronald B
¨
ohnke, Volker K
¨
uhn, and Karl-Dirk Kammeyer
Department of Communications Engineering
University of Bremen
Otto-Hahn-Allee, D-28359 Bremen, Germany
Email: {wuebben, boehnke, kuehn, kammeyer}@ant.uni-bremen.de
Abstract— In rich-scattering environments layered space-time
architectures like the BLAST system may exploit the capacity ad-
vantage of multiple antenna systems. In this paper, we present a
novel, computationally efficient algorithm for detecting V-BLAST
architectures with respect to the MMSE criterion. It utilizes a
sorted QR decomposition of the channel matrix and leads to a
simple successive detection structure. The new algorithm needs
only a fraction of computational effort compared to the standard
V-BLAST algorithm and achieves the same error performance.
Index Terms— BLAST, MIMO systems, Zero-Forcing and
MMSE detection, wireless communication.
I. INTRODUCTION
In rich-scattering environments the V-BLAST (Vertical Bell
Labs Layered Space-Time) architecture proposed in [1] ex-
ploits the capacity advantage of multiple antenna systems. It
uses a vertically layered coding structure, where independent
code blocks (called layers) are associated with a particular
transmit antenna. At the receiver, these layers are detected
by a successive interference cancellation technique which
nulls the interferers by linearly weighting the received signal
vector with a zero-forcing nulling vector (ZF-BLAST). This
successive detection requires multiple calculations of pseudo-
inverses, being a computational expensive task. A reduced
complexity detection algorithm utilizing a sorted QR decom-
position of the channel matrix was proposed by the authors
in [2], [3]. It jointly calculates an optimized detection order
and the QR decomposition of the channel matrix and is called
ZF-SQRD (ZF Sorted QR Decomposition). An adaption of the
original ZF-BLAST to the MMSE criterion was presented in
[4] and a version with lower complexity was introduced in [5].
In this paper, we extend the ZF-SQRD algorithm to the
MMSE solution, called MMSE-SQRD. Similar to ZF-SQRD it
does not always find the optimal detection order and from there
a performance degradation may occur. If this drawback is not
acceptable for the specific application, a post-sorting algorithm
(PSA) can be used, leading to the ideal detection sequence
and thus to the performance of MMSE-BLAST. However,
the combination of MMSE-SQRD and PSA requires only
a fraction of computational effort compared to the BLAST
detection algorithm.
This work was supported in part by the German ministry of education and
research (BMBF) under grant 01 BU 153.
The remainder of this paper is as follows. In Section II,
the system model and notation is introduced. In order to
simplify later derivation we recall the linear ZF and MMSE
filter and introduce an extended system model in Section III.
The detection of BLAST systems using the QR decomposition
of the channel matrix is investigated in Section IV. The
computational effort and the performance analysis are given
in Section V and VI, respectively. Concluding remarks can be
found in Section VII.
II. S
YSTEM DESCRIPTION
We consider a multiple antenna system with n
T
transmit
and n
R
≥ n
T
receive antennas. The data is demultiplexed
into n
T
data substreams of equal length (called layers). These
substreams are optionally encoded by a convolutional code
(CC), bit-interleaved, mapped onto M -PSK or M-QAM sym-
bols s
i
and transmitted over the n
T
antennas simultaneously.
For simplicity we will assume uncoded substreams for the
derivation of the detection algorithms, but will investigate the
performance of coded and uncoded systems in Section VI.
Data
Transmitter Receiver
1
x
1
n
R
n
x
R
n
n
1
s
1,1
h
,
RT
nn
h
estim.
Data
Detector
&
Decoder
T
n
s
1,
T
n
h
,1
R
n
h
CC
P
P
CC
Fig. 1. Model of a MIMO system with n
T
transmit and n
R
receive antennas.
In order to describe the MIMO system, one time slot of
the time-discrete complex baseband model is investigated.
Let
1
s =[s
1
... s
n
T
]
T
denote the n
T
× 1 transmit signal
vector, then the corresponding n
R
× 1 receive signal vector
x =[x
1
... x
n
R
]
T
is given by
x = Hs + n . (1)
In (1), n =[n
1
... n
n
R
]
T
represents white gaussian noise
of variance σ
2
n
observed at the n
R
receive antennas while
1
Throughout this paper, (·)
T
and (·)
H
denote matrix transpose and
hermitian transpose, respectively. Furthermore, I
α
indicates the α×α identity
matrix and 0
α,β
denotes the α × β all zero matrix.
0-7803-7954-3/03/$17.00 ©2003 IEEE. 508
资源评论
pk_xz123456
- 粉丝: 2772
- 资源: 3962
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Flask API接口与PostgreSQL数据库操作实现:测试连接、插入和查询数据
- 基于springboot3+jdk17+mybatis-plus+mysql8+kotlin+vue+uniapp+elementui等的专注于中小企业的erp系统
- 基于扩展卡尔曼滤波器的永磁同步电机matlab仿真模型.
- Ansys Fluent激光电弧焊接增材数值模拟案例,内容包含 激光焊接熔池演变(视频教程) SLM激光熔池演变(视频教程) 激光熔覆单道单层、两层、两道单层 (程序讲解) 激光电弧复合熔滴熔池耩合(
- MooInfo是OSHI 的一种可视化实现,用于查看有关系统和硬件的信息 如操作系统,进程,内存,CPU,磁盘,设备,传感器等
- stm32 光敏控制led
- 含风光储并网的IEEE33节点配电系统simulink模型,当风光容量较多时将呢能量储存,风光容量不足负载供电时储能放电,风光储能另配备简单的电流保护,在系统发生故障时可切除并网部分
- RoomIt是一款基于JavaFx、操作简便、轻量的屏幕画笔工具
- 基于BP神经网络的matlab的手写数字识别系统万字文档 包含代码和文档,可实现三项功能具有很好的移植性: 1.单个手写体数字的实时识别 2.邮政编码识别 3.带噪验证码识别 程序还可以实现灰度化,二
- 头歌平台数字逻辑曾西洋老师的课堂答案
- comsol流热拓扑优化多目标平均温度和最小耗散归一化处理
- 基于EKF扩展卡尔曼滤波的PMSM无传感器控制 仿真实现了永磁电机无传感器转速闭环控制 其中,永磁同步电机采用数学模型进行建模,将卡尔曼滤波器作为自适应系统控制电机工作,该算法适用于高性能伺服系统
- comsol多孔介质流固耦合案例,孔压、位移时空演化特征
- 广州幼儿园新学期家长会模板.pptx
- 卡通花朵手绘儿童小学一年级家长会模板.pptx
- 环保地球主题小学生新学期家长会模板.pptx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功