视频监控大数据的关键技术和应用.pdf
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
视频监控大数据的关键技术和应用 随着全国各地平安城市、行业安防等项目的大规模建设,视频监控在安防领域中发挥着越来越重要的作用,成为技术防范的最有力手段。视频监控的大数据趋势视频监控从最早的模拟闭路监控系统开始,经历过模拟监控、数字监控、网络监控等重要发展阶段,如今进入了大数据的时代,并面临着一系列的挑战。 一、大数据的概念和特征 大数据是指大小超出了常用的软件工具在运行时间内可以承受的收集、管理、处理数据能力的数据集。一般将大数据归纳为三个特征,即 3V:体量巨大(Volumn)、类型多样(Variety)、快速处理(Velocity)。在大数据中,绝大部分由非结构化数据组成。据统计,目前在全球所有大数据中占主导地位的是图像视频数据,2012 年其占比已达到了 80%,2013 年预计接近 90%。 二、大数据在视频监控中的应用 视频监控的大数据趋势视频监控从最早的模拟闭路监控系统开始,经历过模拟监控、数字监控、网络监控等重要发展阶段,如今进入了大数据的时代,并面临着一系列的挑战。视频监控数据的增长有三个主要的因素。视频监控不再是一个独立割裂的系统,系统的融合将催生更丰富的数据。高清视频的编解码能力不断提高,导致数据生成的厚度和精度不断提升,高分辨率和高帧率已成为视频监控主流需求。再次,数据生成点的规模在不断扩大,视频监控的覆盖范围和监控点、卡口的数量都以 30%以上的增长率在快速增加。 三、大数据处理技术在视频监控中的应用 大数据处理技术的应用,将成为下一代视频监控的发展关键。视频监控数据的管理存在瓶颈数据的爆炸式增长,意味着需要投入更多的资源以及付出更多的努力,才能在这些体量庞大的数据中寻找到有价值的信息。当前对视频监控数据的管理能力较弱,其发展没能跟上数据增长的速度,体现在以下几个方面: 1. 数据的存储和管理 视频监控数据具有高并发、大容量的特点。存储系统还必须具有高级别的容错性,存储介质的故障率通常较高,但故障发生时不应造成监控数据的丢失。 2. 数据的智能分析 图像视频的理解和识别一直是计算机视觉领域的难题,由于很难智能地分析出视频中蕴含的丰富内容,我们仍然要耗费大量的人力物力,在海量的视频监控数据中查找有价值的信息。 3. 数据的融合与协同应用 目前,视频监控系统与其它相关系统之间,只是基于视频浏览等基础功能进行有限的对接。但如果能进行更深入的融合,通过对多种关联数据进行分析,可以挖掘出更有价值的应用,例如刑侦线索分析、案件规律分析、社会舆情分析、金融诈骗分析、公共交通优化等。 四、大数据处理技术的关键技术 大数据的关键技术涵盖了数据采集、传输、存储、处理、应用等各个环节。本文主要围绕视频大数据的存储和处理来进行阐述。传统的数据处理方法是以处理器为中心,而大数据具有海量和分布性的特点,需要采取以数据为中心的模式,将计算任务分配到数据所在的节点中执行,减少数据移动带来的庞大开销。云计算是大数据处理的核心技术,是大数据挖掘的主流方式。 大数据处理技术的应用,将成为下一代视频监控的发展关键。视频监控的大数据趋势视频监控从最早的模拟闭路监控系统开始,经历过模拟监控、数字监控、网络监控等重要发展阶段,如今进入了大数据的时代,并面临着一系列的挑战。笔者认为,大数据处理技术的应用,将成为下一代视频监控的发展关键。
- 粉丝: 71
- 资源: 5万+
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助