## FusionFrame
FusionFrame is basic image and video processing application built using `python`, `opencv` and the `customtkinter` library. It allows users to apply various filters, detect objects using pre-trained YOLOv3, process prictures, stored videos, and live video feeds from a webcam.
This was a weekend project as part of an extensive two months "Deep Neural Network Bootcamp" at GIKI Sawabi.
## Table of Contents
- [FusionFrame](#fusionframe)
- [Table of Contents](#table-of-contents)
- [Features](#features)
- [Installation](#installation)
- [Usage](#usage)
- [Features Overview](#features-overview)
- [Contributing](#contributing)
## Features
- Load and process images and videos, and live webcam.
- Apply various filters such as Gaussian Blur, Median Blur, Bilateral Filter, and more.
- Detect objects in images and videos using YOLOv3.
- View live video feed from the webcam and apply filters or object detection in real-time.
- Switch between Dark, Light, and System themes.
## Installation
1. **Clone the repository:**
```bash
git clone https://github.com/Aamir-Khan-Maarofi/FusionFrame.git
cd fusionframe
```
1. **Create and activate a virtual environment:**
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
2. **Install the required dependencies:**
```bash
pip install -r requirements.txt
```
## Usage
1. **Download YoloV3 Weights:**
- [CFG (YoloV3)](https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg)
- [ClassNames (YoloV3)](https://github.com/pjreddie/darknet/blob/master/data/coco.names)
- [Weights (YoloV3)](https://github.com/patrick013/Object-Detection---Yolov3/blob/master/model/yolov3.weights)
- Ensure that the files after download are placed in `yolo` sub-directory inside current script directory
- Otherwise, update the paths in `YOLODetector` constructor to ensure that configurations are loaded
```python
self.weights_path = 'yolo/yolov3.weights'
self.cfg_path = 'yolo/yolov3.cfg'
self.names_path = 'yolo/coco.names'
```
- On invalid configuration, invalid paths to configurations (files renamed, moved) the app will show an error message and abort.
1. **Run the application:**
```bash
python fusionframe.py
```
## Features Overview
- Source Selection: Load images, videos, or start the live camera feed.
- Object Detection: Use YOLOv3 to detect objects in the selected source.
- Filters List: Apply various filters to the selected source.
## Contributing
Feel free to add your creativity to FusionFrame! To contribute:
- Fork the repository.
- Create a new branch (git checkout -b feature-branch).
- Make your changes.
- Commit your changes (git commit -am 'commit message').
- Push to the branch (git push origin feature-branch).
- Create a new Pull Request.
没有合适的资源?快使用搜索试试~ 我知道了~
基于OpenCV、Customtkinter和预训练YOLO V3对象检测模型的Windows GUI应用程序
共7个文件
png:2个
txt:1个
py:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 53 浏览量
2024-09-14
22:10:53
上传
评论
收藏 4.52MB ZIP 举报
温馨提示
基于OpenCV、Customtkinter和预训练YOLO V3对象检测模型的Windows GUI应用程序 特征 加载和处理图像和视频,以及实时网络摄像头。 应用各种滤镜,例如 Gaussian Blur、Median Blur、Bilateral Filter 等。 使用 YOLOv3 检测图像和视频中的对象。 查看来自网络摄像头的实时视频源,并实时应用过滤器或对象检测。 在 深色、浅色 和 系统主题之间切换。 安装 克隆存储库: git clone https://github.com/Aamir-Khan-Maarofi/FusionFrame.git cd fusionframe 创建并激活虚拟环境: python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate 安装所需的依赖项: pip install -r requirements.txt 用法 下载 YoloV3 权重: CFG (YoloV3) CFG;YoloV3; 类名称 (YoloV3) 权重 (Yol
资源推荐
资源详情
资源评论
收起资源包目录
FusionFrame-master.zip (7个子文件)
FusionFrame-master
.gitattributes 57B
assets
main_cover_image.png 4.5MB
main_logo.png 19KB
FusionFrame.py 23KB
requirements.txt 270B
.gitignore 15B
README.md 3KB
共 7 条
- 1
资源评论
hakesashou
- 粉丝: 6617
- 资源: 1666
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功