没有合适的资源?快使用搜索试试~ 我知道了~
物联网-智慧交通-对同轴电缆布拉格电栅传感特性的研究.pdf
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 22 浏览量
2022-07-01
10:20:52
上传
评论
收藏 1.72MB PDF 举报
温馨提示
物联网和智慧交通是现代科技发展的重要领域,而光纤布拉格光栅(FBG)传感器在这一领域的应用日益广泛。然而,现有的FBG传感器在实际应用中仍存在诸多问题,如脆弱性、能承受的应变小等。为解决这些问题,本文提出了一种新型的传感设备——同轴电缆布拉格电栅。 同轴电缆布拉格电栅是将光纤布拉格光栅的特性与概念应用于同轴电缆中的一种创新装置。这种电栅利用了周期性结构反射电磁波的原理,类似于光纤布拉格光栅,但其尺寸较大,能够承受更大的拉力,弥补了传统光纤光栅易碎且测量应变范围有限的缺点。它在大应变传感领域具有广阔的应用前景。 为了深入理解同轴电缆布拉格电栅的工作机制,文章首先介绍了传输线理论和模式耦合的基本原理,详细描述了同轴电缆布拉格电栅的工作原理。接着,通过分析同轴电缆布拉格电栅的基本结构,运用传输线理论推导出其反射系数,这为设计和优化这种新型传感器提供了理论基础。 此外,文章还采用电磁仿真软件Ansoft HFSS对同轴电缆布拉格电栅进行了建模和仿真。Ansoft HFSS基于有限元方法的数值求解电磁场,具有设计简单和用户界面友好的特点。通过仿真,研究人员比较了模拟结果与理论分析之间的相似性和差异,进一步验证了同轴电缆布拉格电栅的性能和可行性。 这项研究不仅提出了同轴电缆布拉格电栅的概念,还对其特性进行了理论分析和实证研究,为物联网和智慧交通领域的传感器技术提供了新的解决方案。尤其是在大应变监测、结构健康监测系统中,同轴电缆布拉格电栅有望发挥重要作用,提高监测精度和可靠性,推动智慧交通系统的智能化发展。
资源推荐
资源详情
资源评论
Abstract
Currently, FBG sensors are widely used in structural health monitoring systems.
However, the existing fiber Bragg grating sensors in practice there are still many
problems. This article uses the coaxial cable as the sensing medium , with coaxial
photonic crystal fiber Bragg grating structure methods and principles , put forward the
concept of coaxial Bragg electric gate . Bragg grating coaxial electric wave
propagating through the periodic structure is reflected from impedance
discontinuities , which the optical fiber Bragg grating with similar characteristics , but
compared to the fiber grating, having a larger size coaxial cable Bragg grating , can
withstand a greater tension characteristics to make up for the fragile fiber grating can
be measured strain small shortcomings.
Coaxial cable Bragg grating , is a fiber Bragg grating characteristics and
concepts implemented in the coaxial cable of the new device, which has a similar
grating transmission and reflection characteristics , but also is a fiber does not have
the ability to withstand large strain , in the field of large strain sensing is expected to
place. However, few domestic coaxial cable Bragg grating system for theoretical
studies and simulation. First, through the transmission line and the mode coupling
theory of the basic principles of coaxial cable Bragg grating are described, studied the
effects of coaxial cable Bragg grating mechanism . Finally, the coaxial cable Bragg
grating basic structure , and the use of transmission line theory of coaxial cable Bragg
grating deduced reflection coefficient .
Further use of the electromagnetic simulation software Ansoft HFSS carried out
on the coaxial cable Bragg grating modeling and simulation , the simulation results
are compared with the results of the analysis of the similarities and differences .
Ansoft HFSS finite element method to numerical solution of the electromagnetic field
as its foundation , with simple design and friendly interface, powerful analytical
performance and post-processor , you can arbitrarily shaped three-dimensional
structure of the electromagnetic field analysis . During the simulation , has conducted
a number of different periods , different cycle lengths and different drilling conditions
and other circumstances of the simulation ; parameters were compared over the
frequency on the electrical characteristics of the gate , reached the following
conclusions : coaxial cable Bragg grating based on the same cable resonant frequency
and cycle length is inversely proportional to the number of cycles increases with the
resonant peak and by the shape and size affect drilling ; was further realization based
on a coaxial Bragg grating sensor electrical parameter optimization of experimental
studies and provide theoretical guidance.
Finally, the production of coaxial cable Bragg grating through laboratory, build
system experiments, the final results were compared with the simulation results ,
comparing the results are basically the same frequency characteristic spectrum . In
order to apply the Coaxial Cable Bragg Grating Sensor to practice, the period and the
hole parameters of which are optimized, reducing the width and improves the sensing
accuracy, large strain sensing the direction of a good application prospects.
Key words: coaxial cable Bragg grating; CCBG sensing; HFSS;
目 录
第一章 绪论 ........................................................................................................ 1
1.1 引言 ........................................................................................................... 1
1.2 研究基础 ................................................................................................... 3
1.2.1 大应变传感技术国内外发展 ............................................................ 3
1.2.2 同轴光子晶体研究进展 .................................................................... 5
1.2.3 同轴电缆技术的研究 ........................................................................ 6
1.3 本文主要工作和创新点 ........................................................................... 7
第二章 同轴电缆布拉格电栅基本原理 ............................................................... 9
2.1 电栅的结构形式 ....................................................................................... 9
2.2 传输线理论 ............................................................................................... 9
2.3 模式耦合理论 ......................................................................................... 16
2.4 本章小结 ................................................................................................. 20
第三章 同轴电缆布拉格电栅仿真分析 .............................................................. 21
3.1 仿真原理 ................................................................................................. 21
3.2 同轴电缆布拉格电栅仿真建模 ............................................................. 24
3.2.1 电栅参数模型 ................................................................................ 25
3.2.2 仿真求解 ........................................................................................ 27
3.3 同轴电缆布拉格电栅仿真结果分析 ..................................................... 30
3.4 计算式验证 ............................................................................................. 35
3.5 本章小结 ................................................................................................. 38
第四章 同轴电缆布拉格电栅系统实验 .............................................................. 39
4.1 系统组成 ................................................................................................. 39
4.2 频率源子系统 ......................................................................................... 39
4.3 其他子系统 ............................................................................................. 45
4.3.1 微控制器 ........................................................................................ 46
4.3.2 环形器、检波器 ............................................................................ 47
4.4 系统实验分析 ......................................................................................... 48
4.5 本章小结 ................................................................................................. 49
第五章 总结与展望 ............................................................................................ 50
5.1 工作总结 ................................................................................................. 51
5.2 展望 ......................................................................................................... 52
参考文献 ............................................................................................................. 53
发表论文和参加科研情况说明 ........................................................................... 55
致 谢 ............................................................................................................. 57
第一章 绪论
- 1 -
第一章 绪论
1.1 引言
目前,结构健康监测系统(Structural Health Monitoring,SHM)
[1]
被越来越广泛地
应用于重大工程结构中。随着工作时间的增长和自然环境的影响,重大工程结构会
受到损伤,为避免这种损伤累积造成的事故、灾害和负面影响,需要运用传感技术
对重大工程结构进行监测、预警以及控制
[2]
。嵌入式传感器具备满足结构健康监测
要求的特点。这些传感器用于对比正常状态与极端状态条件下的腐蚀情况和原始
状况作对比来评估建筑结构的健康情况。
近几年,传感器开发方面的进展促使了信息处理技术获得相应的进展,并且影
响了计算机技术与微处理器领域的快速发展。目前,在测控系统中微处理器已经获
得了广泛的应用。伴随着对系统的要求越老越高,实现的功能越来越多,传感器通
常作为信息采集系统的入口模块,起到越来越重要的作用,决定了整个系统的性能。
在自动化领域,传感器也已成为系统与机器人相关技术中的重要组成部分。总而言
之,传感器作为系统中的一个关键部件,发挥的作用越来越重要
[3]
。正因为如此,
当这些工程结构的大尺寸和几何形状复杂性时,结构的完整性监测在技术上具有挑
战性。监控技术总体要求包括分辨率高,动态范围大,高可靠性,成本低,长工作
距离和远程操作。然而,现有的传感器很难满足以上这些要求
[6]
。
最近,大应力传感器的快速发展已成为世界瞩目。实现大的动态范围同时保
持高的灵敏度仍是一个巨大的挑战。在动态范围小于 1.5%的情况下以电阻应变
仪为代表的常规应变传感器能起到很好的作用效果。同时,对于应变高于 2%的
延长计量,线性可变差动压力变压器和光栅标记跟踪技术则比较适用。他们可以
测到高达 5%的应变分辨率低到 0.45%。但是这些大应变传感器具有很大的尺寸,
所以它们很难被嵌入到建筑结构中
[7]
。另外还有电线连接稳定性差,大温度交叉
敏感等问题。
目前,光纤传感器已被广泛应用于结构系统监测,相比于传统传感器,它具有
高精度、体积小、不容易受电磁干扰等优势
[8]
;其中光纤光栅传感器作为光纤传感
器中的热门,起到越来越重要的作用,更是被广泛运用于桥梁检测、铁路系统、建
筑、油田管道、地质监测、电力工业等诸多的领域
[9]
。然而,现有的光纤光栅传感
器在实际应用中仍存在许多问题,尤其是光纤光栅制作材料本身的脆弱,致使其测
量动态范围较小且易损坏,在严苛的条件和环境下无法满足实时应变测量的要求
[10]
。并且,在一般情况下由于石英玻璃的形变量有限,所以光纤传感器的动态范
剩余61页未读,继续阅读
资源评论
programhh
- 粉丝: 8
- 资源: 3742
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 微信开发者工具(微信小游戏开发引擎)findChildByName全局查找封装
- (源码)基于Python和RealsenseD455的脑外科手术机器人系统.zip
- (源码)基于Java Web的订单管理系统.zip
- (源码)基于Python和Django框架的Jcrontab任务管理系统.zip
- (源码)基于RePlugin插件化框架的动态功能接入系统.zip
- (源码)基于ASP.NET Core的学生教师管理系统.zip
- (源码)基于C++的机房预约管理系统.zip
- (源码)基于Qt框架的权限管理系统.zip
- (源码)基于物联网的净水厂水质监测系统.zip
- (源码)基于Python和Flask框架的脑健康监测系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功