===========
NumPy C-API
===========
::
unsigned int
PyArray_GetNDArrayCVersion(void )
Included at the very first so not auto-grabbed and thus not labeled.
::
int
PyArray_SetNumericOps(PyObject *dict)
Set internal structure with number functions that all arrays will use
::
PyObject *
PyArray_GetNumericOps(void )
Get dictionary showing number functions that all arrays will use
::
int
PyArray_INCREF(PyArrayObject *mp)
For object arrays, increment all internal references.
::
int
PyArray_XDECREF(PyArrayObject *mp)
Decrement all internal references for object arrays.
(or arrays with object fields)
::
void
PyArray_SetStringFunction(PyObject *op, int repr)
Set the array print function to be a Python function.
::
PyArray_Descr *
PyArray_DescrFromType(int type)
Get the PyArray_Descr structure for a type.
::
PyObject *
PyArray_TypeObjectFromType(int type)
Get a typeobject from a type-number -- can return NULL.
New reference
::
char *
PyArray_Zero(PyArrayObject *arr)
Get pointer to zero of correct type for array.
::
char *
PyArray_One(PyArrayObject *arr)
Get pointer to one of correct type for array
::
PyObject *
PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
is_f_order)
For backward compatibility
Cast an array using typecode structure.
steals reference to dtype --- cannot be NULL
This function always makes a copy of arr, even if the dtype
doesn't change.
::
int
PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array.
::
int
PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array. Arrays don't have to be "broadcastable"
Only requirement is they have the same number of elements.
::
int
PyArray_CanCastSafely(int fromtype, int totype)
Check the type coercion rules.
::
npy_bool
PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
leaves reference count alone --- cannot be NULL
PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
parameter.
::
int
PyArray_ObjectType(PyObject *op, int minimum_type)
Return the typecode of the array a Python object would be converted to
Returns the type number the result should have, or NPY_NOTYPE on error.
::
PyArray_Descr *
PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
new reference -- accepts NULL for mintype
::
PyArrayObject **
PyArray_ConvertToCommonType(PyObject *op, int *retn)
This function is only used in one place within NumPy and should
generally be avoided. It is provided mainly for backward compatibility.
The user of the function has to free the returned array.
::
PyArray_Descr *
PyArray_DescrFromScalar(PyObject *sc)
Return descr object from array scalar.
New reference
::
PyArray_Descr *
PyArray_DescrFromTypeObject(PyObject *type)
::
npy_intp
PyArray_Size(PyObject *op)
Compute the size of an array (in number of items)
::
PyObject *
PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
Get scalar-equivalent to a region of memory described by a descriptor.
::
PyObject *
PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Get 0-dim array from scalar
0-dim array from array-scalar object
always contains a copy of the data
unless outcode is NULL, it is of void type and the referrer does
not own it either.
steals reference to outcode
::
void
PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Convert to c-type
no error checking is performed -- ctypeptr must be same type as scalar
in case of flexible type, the data is not copied
into ctypeptr which is expected to be a pointer to pointer
::
int
PyArray_CastScalarToCtype(PyObject *scalar, void
*ctypeptr, PyArray_Descr *outcode)
Cast Scalar to c-type
The output buffer must be large-enough to receive the value
Even for flexible types which is different from ScalarAsCtype
where only a reference for flexible types is returned
This may not work right on narrow builds for NumPy unicode scalars.
::
int
PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
*indescr, void *ctypeptr, int outtype)
Cast Scalar to c-type
::
PyObject *
PyArray_ScalarFromObject(PyObject *object)
Get an Array Scalar From a Python Object
Returns NULL if unsuccessful but error is only set if another error occurred.
Currently only Numeric-like object supported.
::
PyArray_VectorUnaryFunc *
PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
Get a cast function to cast from the input descriptor to the
output type_number (must be a registered data-type).
Returns NULL if un-successful.
::
PyObject *
PyArray_FromDims(int NPY_UNUSED(nd) , int *NPY_UNUSED(d) , int
NPY_UNUSED(type) )
Deprecated, use PyArray_SimpleNew instead.
::
PyObject *
PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd) , int
*NPY_UNUSED(d) , PyArray_Descr
*descr, char *NPY_UNUSED(data) )
Deprecated, use PyArray_NewFromDescr instead.
::
PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
min_depth, int max_depth, int flags, PyObject
*context)
Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
Steals a reference to newtype --- which can be NULL
::
PyObject *
PyArray_EnsureArray(PyObject *op)
This is a quick wrapper around
PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
that special cases Arrays and PyArray_Scalars up front
It *steals a reference* to the object
It also guarantees that the result is PyArray_Type
Because it decrefs op if any conversion needs to take place
so it can be used like PyArray_EnsureArray(some_function(...))
::
PyObject *
PyArray_EnsureAnyArray(PyObject *op)
::
PyObject *
PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
*sep)
Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
array corresponding to the data encoded in that file.
The reference to `dtype` is stolen (it is possible that the passed in
dtype is not held on to).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
For memory-mapped files, use the buffer interface. No more data than
necessary is read by this routine.
::
PyObject *
PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
*dtype, npy_intp num, char *sep)
Given a pointer to a string ``data``, a string length ``slen``, and
a ``PyArray_Descr``, return an array corresponding to the data
encoded in that string.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen.
If ``slen`` is < 0, then the end of string is used for text data.
It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
would be the norm).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
::
PyObject *
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于Python的电影数据可视化分析系统源码(95分以上大作业).zip已获导师指导并通过的97分的高分大作业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于Python的电影数据可视化分析系统源码(95分以上大作业).zip已获导师指导并通过的97分的高分大作业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于Python的电影数据可视化分析系统源码(95分以上大作业).zip已获导师指导并通过的97分的高分大作业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于Python的电影数据可视化分析系统源码(95分以上大作业).zip已获导师指导并通过的97分的高分大作业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于Python的电影数据可视化分析系统源码(95分以上大作业).zip已获导师指导并通过的97分的高分大作业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。基于Python的电影数据可视化分析系统
资源推荐
资源详情
资源评论
收起资源包目录
基于Python的电影数据可视化分析系统源码(95分以上大作业).zip (2000个子文件)
fortranobject.c 35KB
wrapmodule.c 8KB
gfortran_vs2003_hack.c 83B
responsive.css 18KB
select2.css 17KB
base.css 16KB
select2.min.css 15KB
widgets.css 10KB
forms.css 8KB
autocomplete.css 8KB
changelists.css 6KB
rtl.css 4KB
boilerplate.css 2KB
responsive_rtl.css 2KB
page.css 2KB
mpl.css 2KB
fbm.css 1KB
login.css 1KB
ol3.css 657B
fonts.css 423B
dashboard.css 412B
ndarraytypes.h 65KB
__multiarray_api.h 62KB
npy_common.h 38KB
npy_math.h 21KB
npy_3kcompat.h 15KB
ufuncobject.h 13KB
__ufunc_api.h 12KB
ndarrayobject.h 11KB
distributions.h 10KB
noprefix.h 7KB
old_defines.h 6KB
fortranobject.h 4KB
npy_1_7_deprecated_api.h 4KB
npy_cpu.h 4KB
arrayscalars.h 4KB
npy_interrupt.h 3KB
npy_endian.h 3KB
_neighborhood_iterator_imp.h 2KB
halffloat.h 2KB
numpyconfig.h 1KB
_numpyconfig.h 891B
npy_os.h 847B
utils.h 750B
oldnumeric.h 733B
npy_no_deprecated_api.h 586B
bitgen.h 409B
arrayobject.h 175B
technical_500.html 17KB
default_urlconf.html 16KB
tabular.html 4KB
base.html 4KB
index.html 3KB
change_form.html 3KB
change_list.html 3KB
technical_404.html 2KB
stacked.html 2KB
delete_confirmation.html 2KB
change_password.html 2KB
delete_selected_confirmation.html 2KB
password_change_form.html 2KB
openlayers.html 2KB
login.html 2KB
openlayers.html 2KB
model_detail.html 2KB
fieldset.html 2KB
template_filter_index.html 2KB
template_tag_index.html 2KB
view_index.html 2KB
all_figures.html 2KB
change_list_results.html 2KB
related_widget_wrapper.html 1KB
object_history.html 1KB
password_reset_confirm.html 1KB
model_index.html 1KB
index.html 1KB
ipython_inline_figure.html 1KB
bookmarklets.html 1KB
single_figure.html 1KB
actions.html 1KB
submit_line.html 1024B
search_form.html 1020B
template_detail.html 1005B
password_reset_form.html 968B
view_detail.html 896B
missing_docutils.html 734B
password_reset_done.html 675B
password_change_done.html 671B
password_reset_email.html 584B
clearable_file_input.html 568B
pagination.html 553B
500.html 531B
date_hierarchy.html 518B
password_reset_complete.html 505B
multiple_input.html 462B
clearable_file_input.html 461B
clearable_file_input.html 461B
invalid_setup.html 439B
multiple_input.html 431B
change_form_object_tools.html 395B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- sunhaolan62024-06-02支持这个资源,内容详细,主要是能解决当下的问题,感谢大佬分享~
猰貐的新时代
- 粉丝: 1w+
- 资源: 2886
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- GigaDevice.GD32F4xx-DFP.2.1.0 器件安装包
- 智慧校园数字孪生,三维可视化
- 多种土地使用类型图像分类数据集【已标注,约30,000张数据】
- 3.0(1).docx
- 国产文本编辑器:EverEdit用户手册 1.1.0
- 多边形框架物体检测27-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 基于stm32风速风向测量仪V2.0
- 高效排序算法:快速排序Java与Python实现详解
- Metropolis-Hastings算法和吉布斯采样(Gibbs sampling)算法Python代码实现
- IP网络的仿真及实验.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功