%下面的函数BaseStepPso实现了标准全局版粒子群算法的单步更新位置速度的功能
function [ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,ParticleScope,MaxW,MinW,LoopC,CurCount)
%功能描述:全局版本:基本的粒子群算法的单步更新位置,速度的算法
%
%[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,MinW,LoopCount,CurCount)
%
%输入参数:ParSwarm:粒子群矩阵,包含粒子的位置,速度与当前的目标函数值
%输入参数:OptSwarm:包含粒子群个体最优解与全局最优解的矩阵
%输入参数:ParticleScope:一个粒子在运算中各维的范围;
%输入参数:AdaptFunc:适应度函数
%输入参数:LoopC:迭代的总次数
%输入参数:CurCount:当前迭代的次数
%
%返回值:含意同输入的同名参数
%
%用法:[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,MinW,LoopC,CurCount)
%异常:首先保证该文件在Matlab的搜索路径中,然后查看相关的提示信息。
% 添加2*unifrnd(0,1).*SubTract1(row,:)中的unifrnd(0,1)随机数,使性能大为提高
%参照基于MATLAB的粒子群优化算法程序设计
%容错控制
if nargin~=7
error('输入的参数个数错误。')
end
if nargout~=2
error('输出的个数太少,不能保证循环迭代。')
end
%开始单步更新的操作
%*********************************************
%*****更改下面的代码,可以更改惯性因子的变化*****
%---------------------------------------------------------------------
%线形递减策略
w=MaxW-CurCount*(MaxW-MinW)/LoopC;
%---------------------------------------------------------------------
%w固定不变策略
%w=0.7;
%w非线形递减,以凹函数递减
%w=(MaxW-MinW)*(CurCount/LoopC)^2+(MinW-MaxW)*(2*CurCount/LoopC)+MaxW;
%---------------------------------------------------------------------
%w非线形递减,以凹函数递减
%w=MinW*(MaxW/MinW)^(1/(1+10*CurCount/LoopC));
%*****更改上面的代码,可以更改惯性因子的变化*****
%得到粒子群群体大小以及一个粒子维数的信息
[ParRow,ParCol]=size(ParSwarm);
%得到粒子的维数
ParCol=(ParCol-1)/2;
SubTract1=OptSwarm(1:ParRow,:)-ParSwarm(:,1:ParCol);
%*****更改下面的代码,可以更改c1,c2的变化*****
c1=2;
c2=2;
%---------------------------------------------------------------------
%con=1;
%c1=4-exp(-con*abs(mean(ParSwarm(:,2*ParCol+1))-AdaptFunc(OptSwarm(ParRow+1,:))));
%c2=4-c1;
%----------------------------------------------------------------------
%*****更改上面的代码,可以更改c1,c2的变化*****
%*********************************************
for row=1:1:ParRow
SubTract2=OptSwarm(ParRow+1,:)-ParSwarm(row,1:ParCol);
TempV=w.*ParSwarm(row,ParCol+1:2*ParCol)+2*unifrnd(0,1).*SubTract1(row,:)+2*unifrnd(0,1).*SubTract2;
%限制速度的代码
for h=1:ParCol
if TempV(:,h)>ParticleScope(h,2)
TempV(:,h)=ParticleScope(h,2);
end
if TempV(:,h)<-ParticleScope(h,2)
TempV(:,h)=-ParticleScope(h,2)+1e-10;
%加1e-10防止适应度函数被零除
end
end
%更新速度
ParSwarm(row,ParCol+1:2*ParCol)=TempV;
%*****更改下面的代码,可以更改约束因子的变化*****
%---------------------------------------------------------------------
%a=1;
%---------------------------------------------------------------------
a=0.729;
%*****更改上面的代码,可以更改约束因子的变化*****
%限制位置的范围
TempPos=ParSwarm(row,1:ParCol)+a*TempV;
for h=1:ParCol
if TempPos(:,h)>ParticleScope(h,2)
TempPos(:,h)=ParticleScope(h,2);
end
if TempPos(:,h)<=ParticleScope(h,1)
TempPos(:,h)=ParticleScope(h,1)+1e-10;
end
end
%更新位置
ParSwarm(row,1:ParCol)=TempPos;
%计算每个粒子的新的适应度值
a=ParSwarm(row,1);
b=ParSwarm(row,2);
ParSwarm(row,5)=AdaptFunc(a,b);
c=OptSwarm(row,1);
d=OptSwarm(row,2);
if ParSwarm(row,2*ParCol+1)<AdaptFunc(c,d)
OptSwarm(row,1:ParCol)=ParSwarm(row,1:ParCol);
end
end
%for循环结束
%寻找适应度函数值最小的解在矩阵中的位置(行数),进行全局最优的改变
[minValue,row]=min(ParSwarm(:,2*ParCol+1));
if AdaptFunc(a,b)<AdaptFunc(c,d)
OptSwarm(ParRow+1,:)=ParSwarm(row,1:ParCol);
end
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
论文首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。
资源推荐
资源详情
资源评论
收起资源包目录
RLwKI490IqGI0E.rar (15个子文件)
shorttime.m 2KB
InitSwarm.m 2KB
gaijin.m 3KB
数据
B2.xls 17KB
B5.xls 17KB
a45.xls 21KB
b3.xls 19KB
a23.xls 22KB
bdata1.xls 35KB
B4.xls 19KB
基于支持向量机的短期电力负荷预测.doc 937KB
AdaptFunc1.m 2KB
pso.m 2KB
BaseStepPso.m 4KB
AdaptFunc.m 2KB
共 15 条
- 1
fpga和matlab
- 粉丝: 17w+
- 资源: 2627
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
- 4
前往页