1.执行MR的命令:
hadoop jar <jar在linux的路径> <main方法所在的类的全类名> <参数>
例子:
hadoop jar /root/wc1.jar cn.itcast.d3.hadoop.mr.WordCount hdfs://itcast:9000/words /out2
2.MR执行流程
(1).客户端提交一个mr的jar包给JobClient(提交方式:hadoop jar ...)
(2).JobClient通过RPC和JobTracker进行通信,返回一个存放jar包的地址(HDFS)和jobId
(3).client将jar包写入到HDFS当中(path = hdfs上的地址 + jobId)
(4).开始提交任务(任务的描述信息,不是jar, 包括jobid,jar存放的位置,配置信息等等)
(5).JobTracker进行初始化任务
(6).读取HDFS上的要处理的文件,开始计算输入分片,每一个分片对应一个MapperTask
(7).TaskTracker通过心跳机制领取任务(任务的描述信息)
(8).下载所需的jar,配置文件等
(9).TaskTracker启动一个java child子进程,用来执行具体的任务(MapperTask或ReducerTask)
(10).将结果写入到HDFS当中
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
内容概要: mr执行笔记; mapreduce框架的规范; wc流程.xls; wordcount的伪代码; yarn提交job的源码流程; YARN中提交job的详细流程; 打开流的关键代码; 打开流的调用流程; 日志格式;
资源推荐
资源详情
资源评论
























收起资源包目录












共 10 条
- 1
资源评论


小小哭包
- 粉丝: 1111
- 资源: 3694
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


安全验证
文档复制为VIP权益,开通VIP直接复制
