<!-- See: www.tensorflow.org/tfx/model_analysis/ -->
# TensorFlow Model Analysis [![PyPI](https://img.shields.io/pypi/pyversions/tensorflow-model-analysis.svg?style=plastic)](https://github.com/tensorflow/model-analysis)
*TensorFlow Model Analysis* (TFMA) is a library for evaluating TensorFlow models.
It allows users to evaluate their models on large amounts of data in a
distributed manner, using the same metrics defined in their trainer. These
metrics can be computed over different slices of data and visualized in Jupyter
notebooks.
![TFMA Slicing Metrics Browser](g3doc/images/tfma-slicing-metrics-browser.gif)
Caution: TFMA may introduce backwards incompatible changes before version 1.0.
## Installation
The recommended way to install TFMA is using the
[PyPI package](https://pypi.org/project/tensorflow-model-analysis/):
<pre class="devsite-terminal devsite-click-to-copy">
pip install tensorflow-model-analysis
</pre>
Currently, TFMA requires that TensorFlow is installed but does not have an
explicit dependency on the TensorFlow PyPI package. See the
[TensorFlow install guides](/install) for instructions.
To enable TFMA visualization in Jupyter Notebook:
<pre class="prettyprint">
<code class="devsite-terminal">jupyter nbextension enable --py widgetsnbextension</code>
<code class="devsite-terminal">jupyter nbextension install --py --symlink tensorflow_model_analysis</code>
<code class="devsite-terminal">jupyter nbextension enable --py tensorflow_model_analysis</code>
</pre>
Note: If Jupyter notebook is already installed in your home directory, add
`--user` to these commands. If Jupyter is installed as root, or using a virtual
environment, the parameter `--sys-prefix` might be required.
### Dependencies
[Apache Beam](https://beam.apache.org/) is required to run distributed analysis.
By default, Apache Beam runs in local mode but can also run in distributed mode
using [Google Cloud Dataflow](https://cloud.google.com/dataflow/). TFMA is
designed to be extensible for other Apache Beam runners.
## Getting Started
For instructions on using TFMA, see the [get started
guide](g3doc/get_started.md) and try out the extensive [end-to-end example](examples/chicago_taxi/README.md).
## Compatible Versions
The following table is the TFMA package versions that are compatible with each
other. This is determined by our testing framework, but other *untested*
combinations may also work.
|tensorflow-model-analysis |tensorflow |apache-beam[gcp]|
|---------------------------|--------------------|----------------|
|GitHub master |1.11 |2.8.0 |
|0.11.0 |1.11 |2.8.0 |
|0.9.2 |1.9 |2.6.0 |
|0.9.1 |1.10 |2.6.0 |
|0.9.0 |1.9 |2.5.0 |
|0.6.0 |1.6 |2.4.0 |
## Questions
Please direct any questions about working with TFMA to
[Stack Overflow](https://stackoverflow.com) using the
[tensorflow-model-analysis](https://stackoverflow.com/questions/tagged/tensorflow-model-analysis)
tag.
没有合适的资源?快使用搜索试试~ 我知道了~
tensorflow_model_analysis-0.11.0.tar.gz
0 下载量 19 浏览量
2024-03-28
23:54:31
上传
评论
收藏 537KB GZ 举报
温馨提示
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
资源推荐
资源详情
资源评论
收起资源包目录
tensorflow_model_analysis-0.11.0.tar.gz (109个子文件)
setup.cfg 38B
vulcanized_template.html 819KB
MANIFEST.in 28B
index.js 538KB
extension.js 4KB
index.js.map 662KB
README.md 3KB
not-zip-safe 1B
PKG-INFO 1KB
PKG-INFO 1KB
post_export_metrics_test.py 40KB
integration_test.py 35KB
post_export_metrics.py 33KB
load.py 23KB
model_eval_lib.py 16KB
util.py 16KB
evaluate_test.py 15KB
serialization_test.py 15KB
tfma_unit.py 14KB
util_test.py 12KB
serialization.py 12KB
export.py 12KB
metrics.py 11KB
aggregate.py 11KB
slicer.py 10KB
fake_sequence_to_prediction.py 10KB
model_eval_lib_test.py 10KB
util_test.py 10KB
slicer_test.py 10KB
setup.py 9KB
exporter.py 9KB
fake_multi_examples_per_input_estimator.py 8KB
graph_ref.py 8KB
util.py 8KB
tfma_unit_test.py 7KB
graph_ref_test.py 7KB
model_eval_lib_test.py 7KB
control_dependency_estimator.py 6KB
util.py 6KB
testutil.py 6KB
types.py 6KB
meta_feature_extractor_test.py 6KB
aggregate_test.py 6KB
encoding.py 6KB
evaluate.py 6KB
predict_extractor.py 5KB
predict_extractor_test.py 5KB
fixed_prediction_classifier_extra_fields.py 5KB
slice_key_extractor_test.py 5KB
multi_head.py 5KB
feature_extractor.py 4KB
meta_feature_extractor.py 4KB
slice_test.py 4KB
fixed_prediction_estimator.py 4KB
fixed_prediction_classifier.py 4KB
custom_estimator.py 4KB
feature_extractor_test.py 4KB
util.py 4KB
slice_key_extractor.py 4KB
export_test.py 4KB
fixed_prediction_estimator_extra_fields.py 4KB
fixed_prediction_estimator_no_labels.py 4KB
csv_linear_classifier.py 3KB
dofn.py 3KB
widget_view.py 3KB
exporter_test.py 3KB
slice.py 3KB
encoding_test.py 3KB
api_types.py 3KB
linear_classifier_multivalent.py 3KB
metric_keys.py 3KB
renderer.py 3KB
slice_accessor.py 2KB
slice_accessor_test.py 2KB
linear_classifier.py 2KB
linear_regressor.py 2KB
widget.py 2KB
model_eval_lib.py 2KB
dnn_classifier.py 2KB
dnn_regressor.py 2KB
__init__.py 2KB
renderer.py 2KB
types_compat.py 2KB
util_test.py 2KB
__init__.py 1KB
constants.py 1KB
visualization.py 937B
__init__.py 839B
constants.py 838B
version.py 755B
__init__.py 734B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
__init__.py 575B
共 109 条
- 1
- 2
资源评论
程序员Chino的日记
- 粉丝: 3664
- 资源: 5万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功