===========
NumPy C-API
===========
::
unsigned int
PyArray_GetNDArrayCVersion(void )
Included at the very first so not auto-grabbed and thus not labeled.
::
int
PyArray_SetNumericOps(PyObject *dict)
Set internal structure with number functions that all arrays will use
::
PyObject *
PyArray_GetNumericOps(void )
Get dictionary showing number functions that all arrays will use
::
int
PyArray_INCREF(PyArrayObject *mp)
For object arrays, increment all internal references.
::
int
PyArray_XDECREF(PyArrayObject *mp)
Decrement all internal references for object arrays.
(or arrays with object fields)
::
void
PyArray_SetStringFunction(PyObject *op, int repr)
Set the array print function to be a Python function.
::
PyArray_Descr *
PyArray_DescrFromType(int type)
Get the PyArray_Descr structure for a type.
::
PyObject *
PyArray_TypeObjectFromType(int type)
Get a typeobject from a type-number -- can return NULL.
New reference
::
char *
PyArray_Zero(PyArrayObject *arr)
Get pointer to zero of correct type for array.
::
char *
PyArray_One(PyArrayObject *arr)
Get pointer to one of correct type for array
::
PyObject *
PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
is_f_order)
For backward compatibility
Cast an array using typecode structure.
steals reference to dtype --- cannot be NULL
This function always makes a copy of arr, even if the dtype
doesn't change.
::
int
PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array.
::
int
PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array. Arrays don't have to be "broadcastable"
Only requirement is they have the same number of elements.
::
int
PyArray_CanCastSafely(int fromtype, int totype)
Check the type coercion rules.
::
npy_bool
PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
leaves reference count alone --- cannot be NULL
PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
parameter.
::
int
PyArray_ObjectType(PyObject *op, int minimum_type)
Return the typecode of the array a Python object would be converted to
Returns the type number the result should have, or NPY_NOTYPE on error.
::
PyArray_Descr *
PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
new reference -- accepts NULL for mintype
::
PyArrayObject **
PyArray_ConvertToCommonType(PyObject *op, int *retn)
::
PyArray_Descr *
PyArray_DescrFromScalar(PyObject *sc)
Return descr object from array scalar.
New reference
::
PyArray_Descr *
PyArray_DescrFromTypeObject(PyObject *type)
::
npy_intp
PyArray_Size(PyObject *op)
Compute the size of an array (in number of items)
::
PyObject *
PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
Get scalar-equivalent to a region of memory described by a descriptor.
::
PyObject *
PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Get 0-dim array from scalar
0-dim array from array-scalar object
always contains a copy of the data
unless outcode is NULL, it is of void type and the referrer does
not own it either.
steals reference to outcode
::
void
PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Convert to c-type
no error checking is performed -- ctypeptr must be same type as scalar
in case of flexible type, the data is not copied
into ctypeptr which is expected to be a pointer to pointer
::
int
PyArray_CastScalarToCtype(PyObject *scalar, void
*ctypeptr, PyArray_Descr *outcode)
Cast Scalar to c-type
The output buffer must be large-enough to receive the value
Even for flexible types which is different from ScalarAsCtype
where only a reference for flexible types is returned
This may not work right on narrow builds for NumPy unicode scalars.
::
int
PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
*indescr, void *ctypeptr, int outtype)
Cast Scalar to c-type
::
PyObject *
PyArray_ScalarFromObject(PyObject *object)
Get an Array Scalar From a Python Object
Returns NULL if unsuccessful but error is only set if another error occurred.
Currently only Numeric-like object supported.
::
PyArray_VectorUnaryFunc *
PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
Get a cast function to cast from the input descriptor to the
output type_number (must be a registered data-type).
Returns NULL if un-successful.
::
PyObject *
PyArray_FromDims(int NPY_UNUSED(nd) , int *NPY_UNUSED(d) , int
NPY_UNUSED(type) )
Deprecated, use PyArray_SimpleNew instead.
::
PyObject *
PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd) , int
*NPY_UNUSED(d) , PyArray_Descr
*descr, char *NPY_UNUSED(data) )
Deprecated, use PyArray_NewFromDescr instead.
::
PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
min_depth, int max_depth, int flags, PyObject
*context)
Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
Steals a reference to newtype --- which can be NULL
::
PyObject *
PyArray_EnsureArray(PyObject *op)
This is a quick wrapper around
PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
that special cases Arrays and PyArray_Scalars up front
It *steals a reference* to the object
It also guarantees that the result is PyArray_Type
Because it decrefs op if any conversion needs to take place
so it can be used like PyArray_EnsureArray(some_function(...))
::
PyObject *
PyArray_EnsureAnyArray(PyObject *op)
::
PyObject *
PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
*sep)
Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
array corresponding to the data encoded in that file.
The reference to `dtype` is stolen (it is possible that the passed in
dtype is not held on to).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
For memory-mapped files, use the buffer interface. No more data than
necessary is read by this routine.
::
PyObject *
PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
*dtype, npy_intp num, char *sep)
Given a pointer to a string ``data``, a string length ``slen``, and
a ``PyArray_Descr``, return an array corresponding to the data
encoded in that string.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen.
If ``slen`` is < 0, then the end of string is used for text data.
It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
would be the norm).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
::
PyObject *
PyArray_FromBuffer(PyObject *buf, PyArray_Descr *type, npy_intp
count, npy_intp offset)
::
PyObject *
PyArray_FromIter(PyObject *obj, PyArray_Descr *dtype, npy_intp count)
steals a reference to dtype (which cannot be NULL)
::
PyObject *
PyArray_Return(PyArrayObject *mp)
Return either an array or the appropriate Python object if the array
is 0d and matches a Python type.
steals reference to mp
::
PyObject *
PyArray_GetField(PyArrayObject *self, PyArray_Descr *typed, int
没有合适的资源?快使用搜索试试~ 我知道了~
基于python的代码抄袭检测系统源码+项目说明(能较全面的检测java代码中是否具有抄袭现象)..zip
共2000个文件
py:1840个
txt:51个
h:27个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 135 浏览量
2024-04-11
23:08:40
上传
评论
收藏 113.8MB ZIP 举报
温馨提示
基于python的代码抄袭检测系统源码+项目说明(能较全面的检测java代码中是否具有抄袭现象)..zip基于python的代码抄袭检测系统源码+项目说明(能较全面的检测java代码中是否具有抄袭现象)..zip基于python的代码抄袭检测系统源码+项目说明(能较全面的检测java代码中是否具有抄袭现象)..zip 【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载使用。 2、适用人群:主要针对计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、数学、电子信息等)的同学或企业员工下载使用,具有较高的学习借鉴价值。 3、不仅适合小白学习实战练习,也可作为大作业、课程设计、毕设项目、初期项目立项演示等,欢迎下载,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于python的代码抄袭检测系统源码+项目说明(能较全面的检测java代码中是否具有抄袭现象)..zip (2000个子文件)
fortranobject.c 35KB
wrapmodule.c 8KB
gfortran_vs2003_hack.c 77B
jquery-ui.css 36KB
jquery-ui.min.css 31KB
jquery-ui.structure.css 18KB
jquery-ui.theme.css 18KB
jquery-ui.structure.min.css 15KB
jquery-ui.theme.min.css 14KB
boilerplate.css 2KB
page.css 2KB
fbm.css 1KB
代码抄袭检测系统-功能说明.docx 0B
代码抄袭检测系统-用户手册.docx 0B
代码抄袭检测系统-通知公告.docx 0B
代码抄袭检测系统-权限控制说明.docx 0B
ndarraytypes.h 64KB
__multiarray_api.h 60KB
npy_common.h 37KB
npy_math.h 23KB
npy_3kcompat.h 14KB
ufuncobject.h 12KB
__ufunc_api.h 12KB
ndarrayobject.h 11KB
distributions.h 9KB
noprefix.h 7KB
old_defines.h 6KB
fortranobject.h 5KB
npy_1_7_deprecated_api.h 5KB
npy_cpu.h 4KB
arrayscalars.h 3KB
npy_interrupt.h 3KB
npy_endian.h 3KB
halffloat.h 2KB
_neighborhood_iterator_imp.h 2KB
numpyconfig.h 1KB
_numpyconfig.h 862B
npy_os.h 817B
utils.h 729B
oldnumeric.h 708B
npy_no_deprecated_api.h 567B
bitgen.h 389B
arrayobject.h 164B
index.html 32KB
all_figures.html 1KB
ipython_inline_figure.html 1KB
single_figure.html 1KB
index.html 613B
jquery-ui.js 509KB
jquery.js 287KB
jquery-ui.min.js 248KB
mpl.js 17KB
nbagg_mpl.js 7KB
index.js 4KB
main.js 3KB
utils.js 3KB
api.js 3KB
vue.config.js 2KB
index.js 1KB
validate.js 1KB
filter_utils.js 811B
mpl_tornado.js 272B
babel.config.js 73B
package-lock.json 396KB
metadata.json 2KB
metadata.json 2KB
package.json 2KB
metadata.json 1KB
metadata.json 1KB
metadata.json 1KB
metadata.json 875B
metadata.json 859B
metadata.json 756B
metadata.json 740B
package.json 702B
README.md 275B
matplotlib.pdf 22KB
hand.pdf 4KB
move.pdf 2KB
help.pdf 2KB
home.pdf 2KB
filesave.pdf 2KB
subplots.pdf 2KB
forward.pdf 2KB
back.pdf 2KB
zoom_to_rect.pdf 2KB
qt4_editor_options.pdf 2KB
test_multiarray.py 309KB
_axes.py 305KB
core.py 254KB
pyparsing.py 221KB
pyparsing.py 221KB
test_axes.py 211KB
_add_newdocs.py 198KB
uts46data.py 196KB
test_core.py 192KB
_base.py 156KB
function_base.py 153KB
patches.py 148KB
crackfortran.py 126KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
龙年行大运
- 粉丝: 1271
- 资源: 3934
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 使用 Visual Studio 2017 和 Windows 10 SDK 编写的 DirectX 11 3D 游戏编程简介源代码.zip
- 使用 Spout 将 openFrameworks 纹理发送或接收至使用 DirectX 和 OpenGL 的其他应用程序.zip
- django开发注意事项
- linux centos7-telnet安装包
- 仓库管理系统final
- windows键盘改键工具
- ai剪辑 ,无需复杂的工序,登录即可免费使用
- Git-2.47.1-64-bit.7z
- 使用 Qt 快速实现 DirectX 11 Windows(以及有用的原语).zip
- 使用 Python PyQt4 和 DirectX 编程进行游戏控制的虚拟键盘.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功