<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 馃殌 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.producthunt.com/@glenn_jocher">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)聽 馃殌 RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)聽 鈽橈笍
RECOMMENDED
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)聽 馃専 NEW
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)聽 馃専 NEW
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)聽 猸� NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 馃殌
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)聽 猸� NEW
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998)聽 猸� NEW
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/
通过注释解析yolo源码,detect.py train.py yolo.py
需积分: 0 74 浏览量
更新于2023-11-10
收藏 865KB ZIP 举报
YOLO(You Only Look Once)是一种流行的实时目标检测算法,其设计目的是在图像处理中快速、准确地定位和识别物体。本压缩包包含的文件"detect.py", "train.py"和"yolo.py"是YOLO算法的核心部分,用于训练模型和进行目标检测。以下是对这些文件的详细解析:
**detect.py**:
这是YOLO模型的预测脚本,主要负责加载预训练模型,并对输入图像或视频帧进行目标检测。关键知识点包括:
1. **模型加载**:`torch.hub.load()`函数用于加载预训练的YOLO模型,这依赖于PyTorch库。
2. **图像预处理**:包括缩放图像以适应模型输入尺寸,归一化像素值等操作。
3. **推理过程**:模型对图像进行前向传播,生成置信度得分和边界框坐标。
4. **非极大值抑制(NMS)**:消除重叠的边界框,保留最佳预测结果。
5. **后处理**:将模型输出转换为人类可读的检测结果,包括物体类别和位置。
6. **可视化**:使用matplotlib或其他库将检测框和类别标签叠加到原始图像上。
**train.py**:
这是YOLO模型的训练脚本,涵盖了数据准备、模型训练、验证和保存的关键步骤:
1. **数据集准备**:定义数据集路径,可能包括图像和对应的标注文件。
2. **数据加载器**:使用`torch.utils.data.Dataset`和`DataLoader`处理数据集,实现批量训练。
3. **模型架构**:构建YOLO网络结构,可以是YOLOv3或YOLOv4等版本。
4. **损失函数**:定义损失函数,通常包括分类损失和定位损失。
5. **优化器**:选择合适的优化器,如Adam或SGD,设置学习率等参数。
6. **训练循环**:执行多轮迭代,每个迭代包括前向传播、计算损失、反向传播和更新权重。
7. **验证与保存**:定期评估模型在验证集上的性能,保存最佳模型权重。
8. **学习率调度**:根据训练进度动态调整学习率,如使用学习率衰减策略。
**yolo.py**:
这个文件可能是YOLO框架的主入口或核心功能模块,可能包含了模型初始化、数据处理和其他辅助功能的代码。具体内容可能包括:
1. **模型配置**:定义模型的超参数,如网络结构、输出层的数量等。
2. **训练设置**:设定训练轮数、批次大小、设备选择(CPU或GPU)等。
3. **模型加载与保存**:可能包含加载预训练模型或从头训练的逻辑,以及模型权重的保存和加载。
4. **数据预处理**:对输入数据进行标准化、归一化等预处理操作,以便于模型训练。
5. **多尺度训练**:一种提高模型泛化能力的策略,使得模型在不同尺寸的输入上都能有良好表现。
6. **回调函数**:在训练过程中执行特定操作的函数,如学习率调整、模型检查点保存等。
这些文件提供了深入理解YOLO模型工作原理和训练过程的机会。通过阅读和注解这些源码,开发者可以更好地掌握目标检测算法的实现细节,进而定制和优化模型以满足特定需求。
Older司机渣渣威
- 粉丝: 152
- 资源: 202
最新资源
- 自动送餐设备sw16可编辑全套技术资料100%好用.zip
- 自动丝印链板线(sw19可编辑+工程图)全套技术资料100%好用.zip
- Meterpreter框架下常见命令及其应用详解
- 自行车立体车库 sw16全套技术资料100%好用.zip
- 自动贴胶带贴膜产线sw17可编辑全套技术资料100%好用.zip
- 多功能集成工具 SpiritTools 2.0.1 版本功能更新与优化
- 自动纸板捆扎机1.5米sw16可编辑全套技术资料100%好用.zip
- python脚本-生成MySQL数据字典
- enhanced chop melons and vegetables-啊哦111
- 字符串-圣诞树c++语言编程代码
- christmasTree-圣诞树html网页代码
- 数据结构与算法 -二叉树的深度
- shell-scripts-python圣诞树
- chdthesis-学术规范与论文写作
- Java-Interview-Advanced-啊哦111
- iot-iita-http