<div align="center">
<p>
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[English](README.md) | [简体中文](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://discord.gg/n6cFeSPZdD">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://discord.gg/n6cFeSPZdD" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
pip install ultralytics
```
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = model.export(format="onnx") # export the model to ONNX format
```
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
All YOLOv8 pretrained models are available here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<details open><summary>Detection</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【博主环境】 *可以在此检测项目基础上增加计数功能,统计当前画面目标总数,或者增加追踪功能,实现追踪计数! python==3.8 pytorch==1.8.1 torchvision==0.9.1 1、搭建环境 建议在anaconda中新建虚拟环境配置,然后在pycharm打开工程,再导入anaconda环境 确保正确安装requirements.txt中的包,可用清华源,下载块! 2、训练好的模型+评估指标曲线+数据集可视化图存放在“ultralytics\yolo\v8\detect\runs\detect”文件夹(资源内不含数据,需要数据请查找博主资源付费下载,或私信博主) 3、开始检测识别 a.打开predict.py修改34行模型路径,照葫芦画瓢修改; b.需要检测的图片或视频预先存放在“\ultralytics\assets”文件夹 c.运行predict.py,开始检测。检测结果会保存在ultralytics/yolo/v8/detect/runs/detect文件夹下 4、训练自己的模型 a.准备数据集,可参考YOLOv5,拆分为train、val即可,标签为txt b.在yolo\v8\detect\data文件夹下新建.yaml文件,照葫芦画瓢,仿照coco128.yaml c.修改tarin.py中的238行,改成自己新建yaml的路径 d.GPU训练(注释掉241行,修改device参数为0),若CPU训练(注释掉242行即可) e.运行train.py开始训练,当精度不在增加时,会自动停止训练。模型保存在ultralytics\yolo\v8\detect\runs\detect文件夹
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOv8的卡车识别检测计数系统Python源码(含训练好的模型+评估指标曲线+项目使用说明).zip (397个子文件)
events.out.tfevents.1691493293.xstrive.836.0 5.41MB
train2017.cache 145KB
CITATION.cff 612B
setup.cfg 2KB
CNAME 20B
inference.cpp 6KB
main.cpp 2KB
style.css 1007B
results.csv 33KB
Dockerfile 3KB
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
Dockerfile-jetson 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
favicon.ico 9KB
MANIFEST.in 213B
tutorial.ipynb 44KB
hub.ipynb 3KB
val_batch1_pred.jpg 346KB
val_batch1_labels.jpg 342KB
val_batch2_pred.jpg 318KB
val_batch2_labels.jpg 313KB
val_batch0_pred.jpg 302KB
train_batch0.jpg 302KB
val_batch0_labels.jpg 299KB
train_batch1.jpg 262KB
train_batch2.jpg 258KB
bus.jpg 134KB
zidane.jpg 49KB
README.md 24KB
README.zh-CN.md 23KB
cfg.md 20KB
train_custom_data.md 16KB
predict.md 16KB
model_export.md 15KB
inference_api.md 14KB
pytorch_hub_model_loading.md 14KB
multi_gpu_training.md 11KB
pose.md 11KB
segment.md 11KB
test_time_augmentation.md 11KB
clearml_logging_integration.md 11KB
hyperparameter_evolution.md 11KB
classify.md 11KB
comet_logging_integration.md 11KB
yolov8.md 11KB
neural_magic_pruning_quantization.md 10KB
model_ensembling.md 10KB
detect.md 10KB
python.md 10KB
running_on_jetson_nano.md 10KB
hyperparameter_tuning.md 9KB
model_pruning_and_sparsity.md 8KB
cli.md 8KB
train.md 7KB
transfer_learning_with_frozen_layers.md 7KB
index.md 7KB
android.md 7KB
tips_for_best_training_results.md 7KB
val.md 7KB
architecture_description.md 7KB
sam.md 7KB
export.md 6KB
aws_quickstart_tutorial.md 6KB
index.md 6KB
CLA.md 6KB
CONTRIBUTING.md 5KB
visdrone.md 5KB
code_of_conduct.md 5KB
globalwheat2020.md 5KB
quickstart.md 5KB
coco.md 5KB
argoverse.md 5KB
voc.md 5KB
yolov5.md 5KB
index.md 5KB
xview.md 5KB
objects365.md 5KB
index.md 5KB
sku-110k.md 5KB
benchmark.md 4KB
ios.md 4KB
mnist.md 4KB
callbacks.md 4KB
index.md 4KB
index.md 4KB
README.md 4KB
coco8-seg.md 4KB
coco8-pose.md 4KB
quickstart_tutorial.md 4KB
coco8.md 4KB
rtdetr.md 4KB
contributing.md 4KB
minimum_reproducible_example.md 4KB
track.md 3KB
index.md 3KB
google_cloud_quickstart_tutorial.md 3KB
index.md 3KB
共 397 条
- 1
- 2
- 3
- 4
资源评论
manylinux
- 粉丝: 4560
- 资源: 2484
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【创新无忧】基于开普勒优化算法KOA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于粒子群优化算法PSO优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于凌日优化算法TSOA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于龙格库塔优化算法RUN优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功