# Mistune v3
A fast yet powerful Python Markdown parser with renderers and plugins.
<a href="https://github.com/lepture/mistune/actions"><img src="https://github.com/lepture/mistune/actions/workflows/tests.yml/badge.svg" /></a>
<a href="https://codecov.io/gh/lepture/mistune"><img src="https://codecov.io/gh/lepture/mistune/graph/badge.svg?token=mcpitD54Tx" alt="Coverage"></a>
**NOTE: This is the re-designed v3 of mistune.**
Looking for old Mistune? Switch branch to:
- v1
- v2
## Paid plugins
You can ask me to create a custom mistune plugin or directive for your needs with GitHub sponsor
[one time tier (Mistune enhance)](https://github.com/sponsors/lepture/sponsorships?tier_id=220664)
## Sponsors
<table>
<tr>
<td><img align="middle" width="64" src="https://typlog.com/android-chrome-512x512.png"></td>
<td>Mistune is sponsored by Typlog, a blogging and podcast hosting platform, simple yet powerful. <a href="https://typlog.com/?utm_source=mistune&utm_medium=referral&utm_campaign=readme">Write in Markdown</a>.
</td>
</tr>
</table>
[**Support Me via GitHub Sponsors**](https://github.com/sponsors/lepture).
## Install
To install mistune:
```
$ pip install mistune
```
## Overview
Convert Markdown to HTML with ease:
```python
import mistune
mistune.html(your_markdown_text)
```
## Security Reporting
If you found security bugs, please do not send a public issue or patch.
You can send me email at <me@lepture.com>. Attachment with patch is welcome.
My PGP Key fingerprint is:
```
72F8 E895 A70C EBDF 4F2A DFE0 7E55 E3E0 118B 2B4C
```
Or, you can use the [Tidelift security contact](https://tidelift.com/security).
Tidelift will coordinate the fix and disclosure.
## Benchmarks
Here is the benchmark score on my computer. Check the `benchmark/bench.py` script.
```
mistune (3.0.0) - atx: 13.901472091674805ms
mistune (slow) - atx: 13.122797012329102ms
mistune (fast) - atx: 13.248443603515625ms
mistune (full) - atx: 15.445232391357422ms
markdown (3.3.7) - atx: 48.41303825378418ms
markdown2 (2.4.3) - atx: 379.30870056152344ms
mistletoe (0.8.2) - atx: 25.46215057373047ms
markdown_it (2.1.0) - atx: 42.37723350524902ms
mistune (3.0.0) - setext: 8.43048095703125ms
mistune (slow) - setext: 8.97979736328125ms
mistune (fast) - setext: 8.122920989990234ms
mistune (full) - setext: 9.525299072265625ms
markdown (3.3.7) - setext: 30.74812889099121ms
markdown2 (2.4.3) - setext: 218.90878677368164ms
mistletoe (0.8.2) - setext: 20.46680450439453ms
markdown_it (2.1.0) - setext: 27.010202407836914ms
mistune (3.0.0) - normal_ul: 60.910940170288086ms
mistune (slow) - normal_ul: 59.69667434692383ms
mistune (fast) - normal_ul: 60.41216850280762ms
mistune (full) - normal_ul: 62.89219856262207ms
markdown (3.3.7) - normal_ul: 83.7857723236084ms
markdown2 (2.4.3) - normal_ul: 175.36139488220215ms
mistletoe (0.8.2) - normal_ul: 74.82385635375977ms
markdown_it (2.1.0) - normal_ul: 103.0113697052002ms
mistune (3.0.0) - insane_ul: 104.1865348815918ms
mistune (slow) - insane_ul: 105.83090782165527ms
mistune (fast) - insane_ul: 103.03664207458496ms
mistune (full) - insane_ul: 105.80086708068848ms
markdown (3.3.7) - insane_ul: 133.82673263549805ms
markdown2 (2.4.3) - insane_ul: 337.23902702331543ms
mistletoe (0.8.2) - insane_ul: 122.10249900817871ms
markdown_it (2.1.0) - insane_ul: 85.92629432678223ms
mistune (3.0.0) - normal_ol: 25.092601776123047ms
mistune (slow) - normal_ol: 25.321483612060547ms
mistune (fast) - normal_ol: 25.11453628540039ms
mistune (full) - normal_ol: 25.945663452148438ms
markdown (3.3.7) - normal_ol: 43.30158233642578ms
markdown2 (2.4.3) - normal_ol: 75.87885856628418ms
mistletoe (0.8.2) - normal_ol: 33.63537788391113ms
markdown_it (2.1.0) - normal_ol: 40.307044982910156ms
mistune (3.0.0) - insane_ol: 46.201229095458984ms
mistune (slow) - insane_ol: 49.14569854736328ms
mistune (fast) - insane_ol: 45.96853256225586ms
mistune (full) - insane_ol: 47.544002532958984ms
markdown (3.3.7) - insane_ol: 50.154924392700195ms
markdown2 (2.4.3) - insane_ol: 210.48712730407715ms
mistletoe (0.8.2) - insane_ol: 84.07974243164062ms
markdown_it (2.1.0) - insane_ol: 83.61554145812988ms
mistune (3.0.0) - blockquote: 15.484809875488281ms
mistune (slow) - blockquote: 16.12544059753418ms
mistune (fast) - blockquote: 15.350818634033203ms
mistune (full) - blockquote: 16.104936599731445ms
markdown (3.3.7) - blockquote: 63.04144859313965ms
markdown2 (2.4.3) - blockquote: 702.4445533752441ms
mistletoe (0.8.2) - blockquote: 28.56159210205078ms
markdown_it (2.1.0) - blockquote: 37.35041618347168ms
mistune (3.0.0) - blockhtml: 7.898569107055664ms
mistune (slow) - blockhtml: 7.080316543579102ms
mistune (fast) - blockhtml: 7.414340972900391ms
mistune (full) - blockhtml: 8.559703826904297ms
markdown (3.3.7) - blockhtml: 46.65660858154297ms
markdown2 (2.4.3) - blockhtml: 122.09773063659668ms
mistletoe (0.8.2) - blockhtml: 12.23611831665039ms
markdown_it (2.1.0) - blockhtml: 26.836156845092773ms
mistune (3.0.0) - fenced: 4.281282424926758ms
mistune (slow) - fenced: 4.092931747436523ms
mistune (fast) - fenced: 4.024267196655273ms
mistune (full) - fenced: 4.453897476196289ms
markdown (3.3.7) - fenced: 33.83779525756836ms
markdown2 (2.4.3) - fenced: 92.49091148376465ms
mistletoe (0.8.2) - fenced: 9.19342041015625ms
markdown_it (2.1.0) - fenced: 12.503623962402344ms
mistune (3.0.0) - paragraph: 95.94106674194336ms
mistune (slow) - paragraph: 561.2788200378418ms
mistune (fast) - paragraph: 93.597412109375ms
mistune (full) - paragraph: 110.09836196899414ms
markdown (3.3.7) - paragraph: 304.1346073150635ms
markdown2 (2.4.3) - paragraph: 267.84825325012207ms
mistletoe (0.8.2) - paragraph: 779.3235778808594ms
markdown_it (2.1.0) - paragraph: 825.5178928375244ms
mistune (3.0.0) - emphasis: 23.591041564941406ms
mistune (slow) - emphasis: 16.934871673583984ms
mistune (fast) - emphasis: 23.232460021972656ms
mistune (full) - emphasis: 25.2840518951416ms
markdown (3.3.7) - emphasis: 76.50399208068848ms
markdown2 (2.4.3) - emphasis: 9.393930435180664ms
mistletoe (0.8.2) - emphasis: 33.68663787841797ms
markdown_it (2.1.0) - emphasis: 60.90521812438965ms
mistune (3.0.0) - auto_links: 3.7980079650878906ms
mistune (slow) - auto_links: 3.3910274505615234ms
mistune (fast) - auto_links: 3.6630630493164062ms
mistune (full) - auto_links: 3.9186477661132812ms
markdown (3.3.7) - auto_links: 23.04673194885254ms
markdown2 (2.4.3) - auto_links: 6.537914276123047ms
mistletoe (0.8.2) - auto_links: 8.360624313354492ms
markdown_it (2.1.0) - auto_links: 19.732236862182617ms
mistune (3.0.0) - std_links: 21.920442581176758ms
mistune (slow) - std_links: 17.487764358520508ms
mistune (fast) - std_links: 19.87743377685547ms
mistune (full) - std_links: 24.514198303222656ms
markdown (3.3.7) - std_links: 39.1237735748291ms
markdown2 (2.4.3) - std_links: 14.519691467285156ms
mistletoe (0.8.2) - std_links: 22.84979820251465ms
markdown_it (2.1.0) - std_links: 32.60660171508789ms
mistune (3.0.0) - ref_links: 47.673940658569336ms
mistune (slow) - ref_links: 39.449214935302734ms
mistune (fast) - ref_links: 44.81911659240723ms
mistune (full) - ref_links: 52.37579345703125ms
markdown (3.3.7) - ref_links: 87.65625953674316ms
markdown2 (2.4.3) - ref_links: 23.118972778320312ms
mistletoe (0.8.2) - ref_links: 59.136390686035156ms
markdown_it (2.1.0) - ref_links: 80.44648170471191ms
mistune (3.0.0) - readme: 56.607723236083984ms
mistune (slow) - readme: 68.8173770904541ms
mistune (fast) - readme: 53.86018753051758ms
mistune (full) - readme: 61.25998497009277ms
markdown (3.3.7) - readme: 211.02523803710938ms
markdown2 (2.4.3) - readme: 533.4112644195557ms
mistletoe (0.8.2) - readme: 110.12959480285645ms
markdown_it (2.1.0) - readme: 247.9879856109619ms
```
## License
Mistune is licensed under BSD. Please see LICENSE for licensing details.
Unity打怪升级
- 粉丝: 2w+
- 资源: 208
最新资源
- CarSim与Simulink联合仿真,实时检测,动态规划路径,实现超车道,基于mpc,模型预测控制实现,距离效果见视频 提供carsim参数配置文件,导入即可运行 提供simulink模型文件 提供
- 三菱FX5U 三菱Q系列程序 三菱FX5U程序,双FX5U80MT主从站控制,普洛菲斯触摸屏程序,搭配三菱伺服,松下变频器控制运动控制数轴运动控制 FX5-485ADP模块通信应用控制,以太网
- 研究考虑CSP电站和ORC的综合能源系统优化规划 程序包含新能源消纳、光热电站、ORC有机郎肯循环、热电联产、燃气锅炉、P2G等综合元素,实现系统总运行成本最小 包括购电、购气成本、弃风光成本、设备运
- 自动驾驶产业链调研之主机厂、软件方案商、硬件方案商 , 超详细的自动驾驶产业链调研,该文件主要整理车企、Tier1主机厂、自动驾驶软件方案商、自动驾驶硬件方案商,在以下维度进行的调研整理,包括
- MATLAB代码:基于储能电站服务的冷热电多微网系统双层优化配置 电网技术文章,《基于储能电站服务的冷热电多微网系统双层优化配置》复现 仿真平台:MATLAB,需要用到cplex求解器
- 基于STM32F103C8Tx的智能温湿度监控助手:打造高效智能家居解决方案
- 约束最优化求解-拉格朗日函数Hesse阵的SQP二次规划方法求解约束最优化问题-梯度法求解无约束最优化问题 源于读研时最优化课程的大作业,具体内容请看图片 提供MATLAB源代码、大作业文档、程序
- 电源艾默生充电桩15kw模块,软件源码加原理图BOM艾默生充电桩15kw模块原版软件源码含核心算法,PFC+DCDC双dsp数字控制,原理图,BOM和PCB(但为PDF版),通信协议文档,带上位机调试
- MATLAB路径规划RRT RRT*算法 RRT 的基本步骤是: 1. 起点作为一颗种子,从它开始生长枝丫; 2. 在机器人的“构型”空间中,生成一个随机点 ; 3. 在树上找到距
- 基于生成对抗网络的可再生能源场景生成方法 风功率场景生成,光伏功率场景生成 可用于随机优化,数据扩充等后续研究 可以实现: 1.深度卷积生成对抗网络(DCGAN) 2.最小二乘生成对抗网络(LSGAN
- 涂布机PLC源代码(三菱PLC+威纶通触摸屏) 触摸屏:MT8102iE PLC:Q03UDE 相关模块:QX41,QY41P,Q68ADV,Q68DAVN,Q68ADV,QJ61BT11 程序:梯形
- RS422-MIL1553B 协议转 支持BC RT BM 1553B逻辑可以原位替BU61580协议芯片 配置寄存器和BU61580一样 存储器范围和BU61580一样4K*16bit 可外接扩展
- Java毕业设计项目:基于Springboot+mysql+maven实现的台球管理系统完整源码分享给需要的同学
- 基于FPGA的Cortex-M3软核基本SOC设计 实现基于FPGA的Cortex-M3软核基本SOC,系统外设包括GPIO和UART串口 开发基于vivado2019.2和vitis,理论上可适用
- Java毕设项目:基于spring+mybatis+maven+mysql实现的高校师生外出请假管理系统【含源码+数据库+任务书+开题报告+毕业论文】
- MATLAB代码:基于两阶段鲁棒优化算法的微网经济调度 关键词:经济调度 微网 两阶段鲁棒规划 仿真平台:MATLAB YALMIP+CPLEX 主要内容:代码主要做的是一个微网中电源容量优化配置
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈