package com.rcd.model.recommender;
import java.util.List;
import org.apache.mahout.cf.taste.impl.common.FastByIDMap;
import org.apache.mahout.cf.taste.impl.model.GenericDataModel;
import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.PreferenceArray;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
public class RecommenderIntro {
public static void main(String[] args) throws Exception {
FastByIDMap<PreferenceArray> preferences = new FastByIDMap<PreferenceArray>();
PreferenceArray prefsForUser1 = new GenericUserPreferenceArray(3);// 注意这里的数字
// 这里是用来存储一个用户的元数据,这些元数据通常来自日志文件,比如浏览历史,等等,不同的业务场合,它的业务语义是不一样
prefsForUser1.setUserID(0, 1);
prefsForUser1.setItemID(0, 101);
prefsForUser1.setValue(0, 5.0f);//<1, 101, 5.0f> < 用户 ID, 物品 ID, 用户偏好 >
prefsForUser1.setItemID(1, 102);
prefsForUser1.setValue(1, 3.0f);//<1, 102, 3.0f>
prefsForUser1.setItemID(2, 103);
prefsForUser1.setValue(2, 2.5f);//<1, 103, 2.5f>
preferences.put(1l, prefsForUser1);// 在这里添加数据,userID作为key
PreferenceArray prefsForUser2 = new GenericUserPreferenceArray(4);
prefsForUser2.setUserID(0, 2);
prefsForUser2.setItemID(0, 101);//<2, 101, 2.0f>
prefsForUser2.setValue(0, 2.0f);
prefsForUser2.setItemID(1, 102);
prefsForUser2.setValue(1, 2.5f);//<2, 102, 2.5f>
prefsForUser2.setItemID(2, 103);
prefsForUser2.setValue(2, 5.0f);//<2, 103, 5.0f>
prefsForUser2.setItemID(3, 104);
prefsForUser2.setValue(3, 2.0f);//<2, 104, 2.0f>
preferences.put(2l, prefsForUser2);
PreferenceArray prefsForUser3 = new GenericUserPreferenceArray(4);
prefsForUser3.setUserID(0, 3);
prefsForUser3.setItemID(0, 101);
prefsForUser3.setValue(0, 2.5f);
prefsForUser3.setItemID(1, 104);
prefsForUser3.setValue(1, 4.0f);
prefsForUser3.setItemID(2, 105);
prefsForUser3.setValue(2, 4.5f);
prefsForUser3.setItemID(3, 107);
prefsForUser3.setValue(3, 5.0f);
preferences.put(3l, prefsForUser3);
PreferenceArray prefsForUser4 = new GenericUserPreferenceArray(4);
prefsForUser4.setUserID(0, 4);
prefsForUser4.setItemID(0, 101);
prefsForUser4.setValue(0, 5.0f);
prefsForUser4.setItemID(1, 103);
prefsForUser4.setValue(1, 3.0f);
prefsForUser4.setItemID(2, 104);
prefsForUser4.setValue(2, 4.5f);
prefsForUser4.setItemID(3, 106);
prefsForUser4.setValue(3, 4.0f);
preferences.put(4l, prefsForUser4);
PreferenceArray prefsForUser5 = new GenericUserPreferenceArray(6);
prefsForUser5.setUserID(0, 5);
prefsForUser5.setItemID(0, 101);
prefsForUser5.setValue(0, 4.0f);
prefsForUser5.setItemID(1, 102);
prefsForUser5.setValue(1, 3.0f);
prefsForUser5.setItemID(2, 103);
prefsForUser5.setValue(2, 2.0f);
prefsForUser5.setItemID(3, 104);
prefsForUser5.setValue(3, 4.0f);
prefsForUser5.setItemID(4, 105);
prefsForUser5.setValue(4, 3.5f);
prefsForUser5.setItemID(5, 106);
prefsForUser5.setValue(5, 4.0f);
preferences.put(5l, prefsForUser5);
DataModel model = new GenericDataModel(preferences);// DataModel的建立
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);//计算相似度
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2,similarity, model);//计算邻居
// 创建推荐引擎
Recommender recommender = new GenericUserBasedRecommender(model,neighborhood, similarity);
//为用户1推荐2个
List<RecommendedItem> recommendations = recommender.recommend(1, 2);
for (RecommendedItem recommendation : recommendations) {
System.out.println(recommendation);
}
}
}