<div align="center">
<p>
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[English](README.md) | [简体中文](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://discord.gg/n6cFeSPZdD">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://discord.gg/n6cFeSPZdD" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
pip install ultralytics
```
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = model.export(format="onnx") # export the model to ONNX format
```
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
All YOLOv8 pretrained models are available here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<details open><summary>Detection</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOv8目标检测算法实现布匹缺陷检测系统源码(运行教程+模型).zip个人大四的毕业设计、经导师指导并认可通过的高分设计项目,评审分98.5分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 【备注】 1、项目源码在上传前,都经过本地成功运行,功能测试无误。请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、机械电子信息等相关专业背景的在校大学生、专业老师 行业从业人员等下载使用。 3、用途:项目代表性强,具有创新性和启发性,故具有挺高的学习借鉴价值。不仅适合小白入门进阶,还可作为毕设项目、课程设计、大作业、比赛初期项目立项演示等。 4、如果基础还不错,又热爱学习钻研,也可基于此项目基础上进行修改进行二次开发。 本人也是技术狂热者,如果觉得此项目对您有价值,欢迎下载使用! 无论您是运行还是二次开发,遇到问题或困惑,欢迎私信交流学习。
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOv8目标检测算法实现布匹缺陷检测系统源码(运行教程+模型).zip (978个子文件)
CITATION.cff 612B
CITATION.cff 612B
setup.cfg 2KB
setup.cfg 2KB
CNAME 20B
CNAME 20B
inference.cpp 6KB
inference.cpp 6KB
main.cpp 2KB
main.cpp 2KB
style.css 1007B
style.css 1007B
results.csv 33KB
results.csv 33KB
Dockerfile 3KB
Dockerfile 3KB
Dockerfile-arm64 2KB
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
Dockerfile-cpu 2KB
Dockerfile-jetson 2KB
Dockerfile-jetson 2KB
.gitignore 50B
.gitignore 50B
inference.h 2KB
inference.h 2KB
comments.html 2KB
comments.html 2KB
source-file.html 858B
source-file.html 858B
favicon.ico 9KB
favicon.ico 9KB
ultralytics-main.iml 612B
ultralytics-main.iml 612B
MANIFEST.in 213B
MANIFEST.in 213B
tutorial.ipynb 44KB
tutorial.ipynb 44KB
hub.ipynb 3KB
hub.ipynb 3KB
train_batch1.jpg 656KB
train_batch1.jpg 656KB
train_batch2.jpg 595KB
train_batch2.jpg 595KB
train_batch0.jpg 581KB
train_batch0.jpg 581KB
val_batch0_pred.jpg 275KB
val_batch0_pred.jpg 275KB
val_batch0_labels.jpg 268KB
val_batch0_labels.jpg 268KB
val_batch2_pred.jpg 260KB
val_batch2_pred.jpg 260KB
val_batch2_labels.jpg 256KB
val_batch2_labels.jpg 256KB
val_batch1_pred.jpg 244KB
val_batch1_pred.jpg 244KB
val_batch1_labels.jpg 239KB
val_batch1_labels.jpg 239KB
bus.jpg 134KB
bus.jpg 134KB
zidane.jpg 49KB
zidane.jpg 49KB
README.md 24KB
README.md 24KB
README.zh-CN.md 23KB
README.zh-CN.md 23KB
cfg.md 20KB
cfg.md 20KB
train_custom_data.md 16KB
train_custom_data.md 16KB
predict.md 16KB
predict.md 16KB
model_export.md 15KB
model_export.md 15KB
inference_api.md 14KB
inference_api.md 14KB
pytorch_hub_model_loading.md 14KB
pytorch_hub_model_loading.md 14KB
multi_gpu_training.md 11KB
multi_gpu_training.md 11KB
pose.md 11KB
pose.md 11KB
segment.md 11KB
segment.md 11KB
test_time_augmentation.md 11KB
test_time_augmentation.md 11KB
clearml_logging_integration.md 11KB
clearml_logging_integration.md 11KB
hyperparameter_evolution.md 11KB
hyperparameter_evolution.md 11KB
classify.md 11KB
classify.md 11KB
comet_logging_integration.md 11KB
comet_logging_integration.md 11KB
yolov8.md 11KB
yolov8.md 11KB
neural_magic_pruning_quantization.md 10KB
neural_magic_pruning_quantization.md 10KB
model_ensembling.md 10KB
model_ensembling.md 10KB
共 978 条
- 1
- 2
- 3
- 4
- 5
- 6
- 10
资源评论
Scikit-learn
- 粉丝: 4848
- 资源: 3182
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- java毕设项目之毕业生学历证明系统+vue(完整前后端+说明文档+mysql+lw).zip
- 高校学术交流平台_g75441il_233-QQ.zip
- 个性化智能学习系统(编号:22575176).zip
- 共享经济背景下校园闲置物品交易平台(编号:33061160).zip
- java毕设项目之个性化旅游攻略定制系统设计与实现+jsp(完整前后端+说明文档+mysql+lw).zip
- 基于MATLAB的导航科学计算库
- 基于JavaScript的在线考试系统(编号:65965158)(1).zip
- 湖南交通工程学院学生就业信息系统_u26ajz8t_205-wx.zip
- 基于Java WEB旅游门票信息系统设计与实现_70rn7486_206-wx.zip
- 基于javaweb宿舍管理系统(编号:18018175).zip
- 基于JavaWeb的教务管理系统(编号:75778125).zip
- Python结合Pygame库实现圣诞主题动画和音乐效果的代码示例
- 基于JavaWeb的毕业季旅游一站式定制服务平台_88z1j4jp_208-wx-(1).zip
- RGMII delay问题
- java毕设项目之基于JSP的网络游戏交易系统的设计与实现+jsp(完整前后端+说明文档+mysql+lw).zip
- 国际象棋检测2-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord数据集合集.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功