ur5_controller-master.zip
## UR5 Realtime client Lightweight python library for controlling UR5 robot from Universal Robot family. Robot kinematics are calculated based on the following paper: [tech report](https://smartech.gatech.edu/handle/1853/50782) ### Requirements * UR Control Box (simulated or real) * Tested on UR Robot software 3.5.1 ### Try it out! ```python >>> from realtime_client import RTClient >>> import numpy as np # connect to address 127.0.0.1 and port 30003 >>> rtc = RTClient('127.0.0.1', 30003) # move end effector to joint goal [q1, q2, q3, q4, q5, q6] >>> joint_values = [d * (np.pi / 180) for d in [-90, -90, -90, -90, 89, 5]] >>> rtc.move_j(joint_values) # move end effector to pose goal [x,y,z,rx,ry,rz] (3D translation and 3D rotation) >>> pose = np.array([-0.46481069, -0.18235116, 0.13827986, -1.58136603, -2.69628063, -0.01169701]) >>> rtc.move_l(pose) # velocity-based controller, move to pose goal [x,y,z,rx,ry,rz] >>> pose = np.array([0.470, -0.491, 0.430, 0.13, 3.15, -0.00]) >>> rtc.move_v(pose) # kinematic test >>> from kinematics import KinematicsUR5 >>> from math_tools import pose2tf >>> kin = KinematicsUR5() >>> target_ee = np.array([-1.10586325e-01, -4.86899999e-01, 4.31871547e-01, -1.36273738e-01, -3.12118227e+00, 1.18929713e-03]) >>> target_pose = pose2tf(target_ee) >>> solutions = kin.inv_kin(target_pose) >>> closest_solution = kin.get_closest_solution(solutions, rtc.get_feedback('joint_values')) >>> rtc.move_j(closest_solution) >>> assert np.allclose(rtc.get_feedback('tool_pose'), target_ee) >>> rtc.close_connection() ```
- 1
- 粉丝: 3
- 资源: 1
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助