<div align="center">
<p>
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[English](README.md) | [简体中文](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics), developed by [Ultralytics](https://ultralytics.com),
is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces
new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and
easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image
classification tasks.
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for
full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including
all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
[**Python>=3.7**](https://www.python.org/) environment with
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
pip install ultralytics
```
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8
[CLI Docs](https://docs.ultralytics.com/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the
same [arguments](https://docs.ultralytics.com/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = model.export(format="onnx") # export the model to ONNX format
```
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
Ultralytics [release](https://github.com/ultralytics/assets/releases). See
YOLOv8 [Python Docs](https://docs.ultralytics.com/python) for more examples.
#### Model Architectures
⭐ **NEW** YOLOv5u anchor free models are now available.
All supported model architectures can be found in the [Models](./ultralytics/models/) section.
#### Known Issues / TODOs
We are still working on several parts of YOLOv8! We aim to have these completed soon to bring the YOLOv8 feature set up
to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
will submit to [arxiv.org](https://arxiv.org) once complete.
- [x] TensorFlow exports
- [x] DDP resume
- [ ] [arxiv.org](https://arxiv.org) paper
</details>
## <div align="center">Models</div>
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset,
while Classification models are pretrained on the ImageNet dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<details open><summary>Detection</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detection/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 |
没有合适的资源?快使用搜索试试~ 我知道了~
基于YOLOv8+PyQt5实现的共享自行车识别检测系统,含数据集+模型+精美GUI界面(可用于违规停放检测告警项目)
共889个文件
jpg:304个
txt:247个
py:87个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
4星 · 超过85%的资源 4 下载量 135 浏览量
2023-09-04
14:07:58
上传
评论 4
收藏 466.56MB ZIP 举报
温馨提示
基于YOLOv8+PyQt5实现的共享自行车识别检测系统,含数据集+模型+精美GUI界面(可用于违规停放检测告警项目) 【项目介绍】 基于YOLOv8的共享自行车识别检测计数系统(可升级为违规停放检测告警),新开发的项目,适合于比赛、课设、毕设。资源提供自行车数据集、训练好的yolov8模型及各种评估曲线,GUI界面,项目详细部署说明,按照操作一步步来,很容易运行起来,模型准确率达到98%。 欢迎下载使用,有问题可随时与我私信或留言!!! 包您运行成功,还可以再此基础上,提出新要求,帮您开发实现!!! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOv8+PyQt5实现的共享自行车识别检测系统,含数据集+模型+精美GUI界面(可用于违规停放检测告警项目) (889个子文件)
train2017.cache 154KB
CITATION.cff 611B
setup.cfg 2KB
CNAME 20B
inference.cpp 6KB
main.cpp 2KB
style.css 684B
results.csv 33KB
results.csv 33KB
Dockerfile 3KB
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
ad6e0d06cedd41aa8f30083a911eca2f.gif 880KB
.gitignore 50B
.gitignore 50B
inference.h 2KB
favicon.ico 5KB
ultralytics-74e4c948063d7ba59e415ea66bd193e881837165.iml 495B
YOLOv8-PySide6-GUI-main.iml 334B
MANIFEST.in 140B
tutorial.ipynb 42KB
train_batch2.jpg 640KB
train_batch0.jpg 612KB
train_batch1.jpg 605KB
val_batch1_pred.jpg 488KB
val_batch2_pred.jpg 479KB
bus.jpg 476KB
test-img.jpg 476KB
val_batch1_labels.jpg 472KB
val_batch2_labels.jpg 465KB
val_batch0_pred.jpg 463KB
val_batch0_labels.jpg 452KB
val_batch1_pred.jpg 444KB
val_batch1_labels.jpg 438KB
val_batch0_pred.jpg 437KB
val_batch0_labels.jpg 433KB
bike5.jpg 412KB
val_batch2_pred.jpg 410KB
val_batch2_labels.jpg 409KB
bike3.jpg 369KB
labels_correlogram.jpg 355KB
train_batch2.jpg 336KB
cross_playphone_105.jpg 323KB
cross_playphone_048.jpg 323KB
cross_playphone_227.jpg 321KB
cross_playphone_222.jpg 316KB
cross_playphone_123.jpg 314KB
train_batch1.jpg 312KB
cross_playphone_140.jpg 311KB
cross_playphone_162.jpg 310KB
cross_playphone_062.jpg 310KB
cross_playphone_020.jpg 309KB
cross_playphone_202.jpg 309KB
cross_playphone_086.jpg 308KB
cross_playphone_167.jpg 308KB
cross_playphone_006.jpg 307KB
cross_playphone_074.jpg 307KB
cross_playphone_003.jpg 307KB
cross_playphone_044.jpg 306KB
cross_playphone_077.jpg 305KB
cross_playphone_224.jpg 305KB
cross_playphone_139.jpg 304KB
cross_playphone_052.jpg 304KB
cross_playphone_129.jpg 303KB
cross_playphone_005.jpg 301KB
cross_playphone_175.jpg 301KB
cross_playphone_010.jpg 299KB
cross_playphone_033.jpg 299KB
cross_playphone_064.jpg 299KB
cross_playphone_138.jpg 299KB
cross_playphone_130.jpg 299KB
cross_playphone_117.jpg 299KB
cross_playphone_059.jpg 299KB
cross_playphone_217.jpg 298KB
cross_playphone_238.jpg 298KB
cross_playphone_051.jpg 298KB
cross_playphone_185.jpg 298KB
cross_playphone_076.jpg 297KB
cross_playphone_050.jpg 297KB
cross_playphone_246.jpg 296KB
cross_playphone_254.jpg 296KB
cross_playphone_141.jpg 296KB
cross_playphone_203.jpg 296KB
cross_playphone_094.jpg 296KB
cross_playphone_011.jpg 296KB
cross_playphone_099.jpg 295KB
cross_playphone_125.jpg 295KB
bike1.jpg 295KB
cross_playphone_164.jpg 295KB
cross_playphone_090.jpg 294KB
cross_playphone_038.jpg 294KB
cross_playphone_232.jpg 294KB
cross_playphone_002.jpg 293KB
cross_playphone_002.jpg 293KB
cross_playphone_063.jpg 293KB
cross_playphone_174.jpg 293KB
cross_playphone_080.jpg 293KB
cross_playphone_176.jpg 292KB
cross_playphone_091.jpg 292KB
cross_playphone_181.jpg 292KB
共 889 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
- weixin_423652132024-07-19加载图片 运行报错onnx2024-11-03什么错?路径不要搞中文啊,有问题直接私信联系,不要随便差评好吧,解决问题是王道
- wangjineryou2024-11-10这个资源内容超赞,对我来说很有价值,很实用,感谢大佬分享~
- D_G_E_F2024-05-14资源内容详细,总结地很全面,与描述的内容一致,对我启发很大,学习了。onnx2024-11-03谢谢
- qq_419383072024-03-02资源使用价值高,内容详实,给了我很多新想法,感谢大佬分享~onnx2024-05-07加油,老铁
onnx
- 粉丝: 9631
- 资源: 5598
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功