/*
RSA算法
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。
它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和
Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数难于分解这一特点。公钥和私钥都是两个大素数(大于100个十进
制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积。密
钥对的产生。选择两个大素数,p 和q 。计算:n = p * q 然后随机选择加密密钥e,要求e和
( p - 1 ) * ( q - 1 )互质。最后,利用Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )其中n和d也要互质。数e和n是公钥,d是私钥。
两个素数p和q不再需要,应该丢弃,不要让任何人知道。加密信息 m(二进制表示)时,首先
把m分成等长数据块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。
对应的密文是:ci = mi^e ( mod n ) ( a ) 解密时作如下计算:mi=ci^d(mod n)(b)
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )式验证。具体操作时考虑到安全性和m信
息量较大等因素,一般是先作HASH 运算。RSA 的安全性。RSA的安全性依赖于大数分解,但是否
等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解.假设
存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,RSA的一些变种算法
已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解140多个
十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。
速度一直是RSA的缺陷。一般来说只用于少量数据加密。
*/
#include<iostream>
#include<stdlib>
#include<time>
using namespace std;//RSA算法所需参数
typedef struct RSA_PARAM_Tag
{
unsigned __int64 p, q; //两个素数,不参与加密解密运算
unsigned __int64 f; //f=(p-1)*(q-1),不参与加密解密运算
unsigned __int64 n, e; //公匙,n=p*q,gcd(e,f)=1
unsigned __int64 d; //私匙,e*d=1 (mod f),gcd(n,d)=1
unsigned __int64 s; //块长,满足2^s<=n的最大的s,即log2(n)
} RSA_PARAM;//小素数表
const static long g_PrimeTable[]=
{
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97
};
const static long g_PrimeCount=sizeof(g_PrimeTable) / sizeof(long);const unsigned __int64 multiplier=12747293821;
const unsigned __int64 adder=1343545677842234541;//随机数类
class RandNumber
{
/* */
private:
unsigned __int64 randSeed;/* */
public:
RandNumber(unsigned __int64 s=0);
unsigned __int64 Random(unsigned __int64 n);
};/* */
RandNumber::RandNumber(unsigned __int64 s)
{
if(!s)
{
randSeed= (unsigned __int64)time(NULL);
}
else
{
randSeed=s;
}
}/* */
unsigned __int64 RandNumber::Random(unsigned __int64 n)
{
randSeed=multiplier * randSeed + adder;
return randSeed % n;
}static RandNumber g_Rnd;/*
模乘运算,返回值 x=a*b mod n
*/
inline unsigned __int64 MulMod(unsigned __int64 a, unsigned __int64 b, unsigned __int64 n)
{
return a * b % n;
}/*
模幂运算,返回值 x=base^pow mod n
*/
unsigned __int64 PowMod(unsigned __int64 &base, unsigned __int64 &pow, unsigned __int64 &n)
{
unsigned __int64 a=base, b=pow, c=1;
while(b)
{
while(!(b & 1))
{
b>>=1; //a=a * a % n; //函数看起来可以处理64位的整数,但由于这里a*a在a>=2^32时已经造成了溢出,因此实际处理范围没有64位
a=MulMod(a, a, n);
} b--; //c=a * c % n; //这里也会溢出,若把64位整数拆为两个32位整数不知是否可以解决这个问题。
c=MulMod(a, c, n);
} return c;
}/*
Rabin-Miller素数测试,通过测试返回1,否则返回0。
n是待测素数。
注意:通过测试并不一定就是素数,非素数通过测试的概率是1/4
*/
long RabinMillerKnl(unsigned __int64 &n)
{
unsigned __int64 b, m, j, v, i;
m=n - 1;
j=0; //0、先计算出m、j,使得n-1=m*2^j,其中m是正奇数,j是非负整数
while(!(m & 1))
{
++j;
m>>=1;
} //1、随机取一个b,2<=b<n-1
b=2 + g_Rnd.Random(n - 3); //2、计算v=b^m mod n
v=PowMod(b, m, n); //3、如果v==1,通过测试
if(v == 1)
{
return 1;
} //4、令i=1
i=1; //5、如果v=n-1,通过测试
while(v != n - 1)
{
//6、如果i==l,非素数,结束
if(i == j)
{
return 0;
} //7、v=v^2 mod n,i=i+1
v=PowMod(v, 2, n);
++i; //8、循环到5
} return 1;
}/*
Rabin-Miller素数测试,循环调用核心loop次
全部通过返回1,否则返回0
*/
long RabinMiller(unsigned __int64 &n, long loop)
{
//先用小素数筛选一次,提高效率
for(long i=0; i < g_PrimeCount; i++)
{
if(n % g_PrimeTable[i] == 0)
{
return 0;
}
} //循环调用Rabin-Miller测试loop次,使得非素数通过测试的概率降为(1/4)^loop
for(long i=0; i < loop; i++)
{
if(!RabinMillerKnl(n))
{
return 0;
}
} return 1;
}/*
随机生成一个bits位(二进制位)的素数,最多32位
*/
unsigned __int64 RandomPrime(char bits)
{
unsigned __int64 base;
do
{
base= (unsigned long)1 << (bits - 1); //保证最高位是1
base+=g_Rnd.Random(base); //再加上一个随机数
base|=1; //保证最低位是1,即保证是奇数
} while(!RabinMiller(base, 30)); //进行拉宾-米勒测试30次
return base; //全部通过认为是素数
}/*
欧几里得法求最大公约数
*/
unsigned __int64 EuclidGcd(unsigned __int64 &p, unsigned __int64 &q)
{
unsigned __int64 a=p > q ? p : q;
unsigned __int64 b=p < q ? p : q;
unsigned __int64 t;
if(p == q)
{
return p; //两数相等,最大公约数就是本身
}
else
{
while(b) //辗转相除法,gcd(a,b)=gcd(b,a-qb)
{
a=a % b;
t=a;
a=b;
b=t;
} return a;
}
}/*
Stein法求最大公约数
*/
unsigned __int64 SteinGcd(unsigned __int64 &p, unsigned __int64 &q)
{
unsigned __int64 a=p > q ? p : q;
unsigned __int64 b=p < q ? p : q;
unsigned __int64 t, r=1;
if(p == q)
{
return p; //两数相等,最大公约数就是本身
}
else
{
while((!(a & 1)) && (!(b & 1)))
{
r<<=1; //a、b均为偶数时,gcd(a,b)=2*gcd(a/2,b/2)
a>>=1;
b>>=1;
} if(!(a & 1))
{
t=a; //如果a为偶数,交换a,b
a=b;
b=t;
} do
{
while(!(b & 1))
{
b>>=1; //b为偶数,a为奇数时,gcd(b,a)=gcd(b/2,a)
} if(b < a)
{
t=a; //如果b小于a,交换a,b
a=b;
b=t;
} b=(b - a) >> 1; //b、a都是奇数,gcd(b,a)=gcd((b-a)/2,a)
} while(b);
return r * a;
}
}/*
已知a、b,求x,满足a*x =1 (mod b)
相当于求解a*x-b*y=1的最小整数解
*/
unsigned __int64 Euclid(unsigned __int64 &a, unsigned __int64 &b)
{
unsigned __int64 m, e, i, j, x, y;
long xx, yy;
m=b;
e=a;
x=0;
y=1;
xx=1;
yy=1;
while(e)
{
i=m / e;
j=m % e;
m=e;
e=j;
j=y;
y*=i;
if(xx == yy)
{
if(x > y)
{
y=x - y;
}
else
{
y-=x;
yy=0;
}
}
else
{
y+=x;
xx=1 - xx;
yy=1 - yy;
} x=j;
} if(xx == 0)
{
x=b - x;
} return x;
}/*
随机产生一个RSA加密参数
*/
RSA_PARAM RsaGetParam(void)
{
RSA_PARAM Rsa={ 0 };
unsigned __int