<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
 
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
- **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
## Pretrained Checkpoints
[assets]: https://github.com/ultralytics/yolov5/releases
Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
--- |--- |--- |--- |--- |--- |---|--- |---
[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
[YOLOv5m][assets] |640 |44.5 |44.5 |63.3 |2.7 | |21.4 |51.3
[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
| | | | | | || |
[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
| | | | | | || |
[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
<details>
<summary>Table Notes (click to expand)</summary>
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Inference
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
基于yolo5_yolov5的测试程序.zip (185个子文件)
4.1.2' 0B
Dockerfile 2KB
Dockerfile 821B
tutorial.ipynb 385KB
bus.jpg 479KB
bus.jpg 479KB
bus.jpg 478KB
bus.jpg 476KB
bus.jpg 476KB
0021.jpg 377KB
0021.jpg 377KB
0021.jpg 376KB
0021.jpg 369KB
0019.jpg 365KB
0017.jpg 364KB
0019.jpg 363KB
0019.jpg 360KB
0017.jpg 359KB
0011.jpg 357KB
0011.jpg 355KB
0017.jpg 355KB
0013.jpg 355KB
0010.jpg 355KB
0018.jpg 353KB
0015.jpg 353KB
0011.jpg 353KB
0013.jpg 353KB
0014.jpg 352KB
0020.jpg 352KB
0018.jpg 352KB
0015.jpg 351KB
0013.jpg 351KB
0019.jpg 351KB
0010.jpg 351KB
0020.jpg 351KB
0020.jpg 350KB
0015.jpg 350KB
0014.jpg 350KB
0007.jpg 350KB
0018.jpg 350KB
0012.jpg 350KB
0010.jpg 349KB
0007.jpg 349KB
0007.jpg 348KB
0014.jpg 348KB
0009.jpg 347KB
0012.jpg 346KB
0009.jpg 346KB
0011.jpg 345KB
0009.jpg 345KB
0017.jpg 345KB
0013.jpg 344KB
0020.jpg 343KB
0015.jpg 343KB
0012.jpg 342KB
0014.jpg 342KB
0002.jpg 341KB
0018.jpg 341KB
0003.jpg 341KB
0005.jpg 341KB
0010.jpg 340KB
0006.jpg 340KB
0006.jpg 338KB
0006.jpg 338KB
0002.jpg 338KB
0003.jpg 338KB
0009.jpg 337KB
0002.jpg 336KB
0005.jpg 336KB
0007.jpg 336KB
0005.jpg 336KB
0003.jpg 334KB
0012.jpg 331KB
0002.jpg 331KB
0006.jpg 328KB
0004.jpg 328KB
0008.jpg 326KB
0008.jpg 324KB
0004.jpg 324KB
0004.jpg 323KB
0008.jpg 323KB
0003.jpg 322KB
0005.jpg 318KB
0008.jpg 313KB
0004.jpg 307KB
0016.jpg 301KB
0016.jpg 300KB
0016.jpg 298KB
0016.jpg 283KB
0001.jpg 273KB
0001.jpg 272KB
0001.jpg 271KB
0001.jpg 255KB
zidane.jpg 249KB
zidane.jpg 247KB
zidane.jpg 246KB
zidane.jpg 243KB
zidane.jpg 165KB
LICENSE 34KB
README.md 11KB
共 185 条
- 1
- 2
资源评论
普通网友
- 粉丝: 1127
- 资源: 5294
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- php的常用函数总结材料
- 基于Python控制台的精美圣诞树程序设计与实现
- 这个资源包含使用HTML5 Canvas绘制圣诞老人和圣诞树的示例代码,适合开发者在网页中实现节日气氛
- 241840040 李占睿 期末作业.docx
- Google Chrome Chrome 128 macOS Catalina Chrome 128浏览器
- 麦克纳姆轮小车sw2020可编辑全套技术开发资料100%好用.zip
- 苹果连接器Bushing组装自动机sw14可编辑全套技术开发资料100%好用.zip
- CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training
- Microsoft Remote Desktop Beta 10.8.4 支持macOS Catalina的最新版本
- 蓝桥杯编程大赛介绍和心得,分享部分案例题型!
- 红盒子检测27-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 设施布局优化-粒子群算法
- 工作汇报 ,年终总结, PPT, PPT模板
- js的三种验证码插件,下载即用
- Beyond Compare 4 文件对比 安装、激活
- Deep Bayesian Active Learning for Preference Modeling in Large Language Models
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功