作者:少儿编程乔老师

每周一算法:背包问题(三)多重背包

多重背包

N N N件物品和一个容量是 M M M的背包。第 i i i种物品最多有 s i s_i si件,每件的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数, N N N M M M,用空格隔开,分别表示物品数量和背包容积。

接下来有 N N N 行,每行三个整数 v i v_i vi, w i w_i wi, s i s_i si,用空格隔开,分别表示第 i i i 件物品的体积,价值和数量。

输出格式

输出一个整数,表示最大价值。

样例 #1

样例输入 #1

4 5
1 2 3
2 4 1
3 4 3
4 5 2

样例输出 #1

10

提示

0 < N ≤ 1000 , 0 < M ≤ 2000 0<N≤1000,0<M\le2000 0<N1000,0<M2000

0 < v i , w i , s i ≤ 2000 0<v_i,w_i,s_i≤2000 0<vi,wi,si2000

算法思想

状态表示

多重背包的特点是第 i i i种物品最多有 s i s_i si件。仍可以采用01背包的思想,将处理每种物品作为一个阶段,考虑在不同背包容量情况下的最大价值,将其状态定义为 f [ i ] [ j ] f[i][j] f[i][j],表示对于 i i i种物品,在背包容量为 j j j的情况下,背包获得的最大价值。

状态计算

在当前阶段,对于第 i i i种物品来说,有多种情况可以选择:

  • 放入 0 0 0件,此时的最大价值为前 i − 1 i-1 i1种物品,在背包容量为 j j j的情况下的最大价值 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]
  • 放入 1 1 1件,此时背包的最大价值为前 i − 1 i-1 i1种物品,在背包容量为 j − v i j-v_i jvi的情况下的最大价值 f [ i − 1 ] [ j − v i ] + w i f[i-1][j-v_i]+w_i f[i1][jvi]+wi
  • 放入 2 2 2件,此时背包的最大价值为前 i − 1 i-1 i1种物品,在背包容量为 j − 2 × v i j-2\times v_i j2×vi的情况下的最大价值 f [ i − 1 ] [ j − 2 × v i ] + 2 × w i f[i-1][j-2\times v_i]+2\times w_i f[i1][j2×vi]+2×wi
  • 放入 k k k件,此时背包的最大价值为前 i − 1 i-1 i1种物品,在背包容量为 j − k × v i j-k\times v_i jk×vi的情况下的最大价值 f [ i − 1 ] [ j − k × v i ] + k × w i f[i-1][j-k\times v_i]+k\times w_i f[i1][jk×vi]+k×wi
  • 放入 s i s_i si件,此时背包的最大价值为前 i − 1 i-1 i1种物品,在背包容量为 j − s i × v i j-s_i\times v_i jsi×vi的情况下的最大价值 f [ i − 1 ] [ j − s i × v i ] + k × w i f[i-1][j-s_i\times v_i]+k\times w_i f[i1][jsi×vi]+k×wi

以上情况的前提是背包能够装得下 k k k件第 i i i种物品,也就是背包容量 j ≥ k × v i j\ge k\times v_i jk×vi。那么, f [ i ] [ j ] f[i][j] f[i][j]应该选择所有情况的最大值,即 f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j − k × v i ] + k × w i } f[i][j] = \max\{f[i-1][j-k\times v_i]+k\times w_i\} f[i][j]=max{f[i1][jk×vi]+k×wi},其中 0 ≤ k ≤ s i 0\le k\le s_i 0ksi,并且 k × v i ≤ j k\times v_i \le j k×vij

初始状态

f [ 0 ] [ 0 ] f[0][0] f[0][0]表示将前 0 0 0种物品装入容量为 0 0 0的背包中的产生的最大价值为 0 0 0

时间复杂度

  • 状态数 n × m n\times m n×m
  • 状态计算时需要枚举第 i i i件物品的数量 s i s_i si,时间复杂度为 O ( s i ) O(s_i) O(si)

总的时间复杂的为 O ( n × m × s ) O(n\times m\times s) O(n×m×s)

代码实现

#include <iostream>
using namespace std;
const int N = 1010, M = 2010;
int f[N][N];
int main(){
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= n; i++)
    {
        int v, w, s;
        cin >> v >> w >> s;
        for(int j = 0; j <= m; j++)
        {
            for(int k = 0; k <= s && k * v <= j; k++)
            {
                f[i][j] = max(f[i][j], f[i - 1][j - k * v] + k * w);
            }
        }
    }
    cout<<f[n][m]<<endl;
    return 0;
}

算法优化

根据上述状态转移方程,考虑能否像完全背包一样的思路进行优化呢?

f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v ] + w , f [ i − 1 ] [ j − 2 × v ] + 2 × w + . . . + f [ i − 1 ] [ j − s × v ] + s × w } f[i][j] = \max\{f[i-1][j], f[i-1][j-v]+w, f[i-1][j-2\times v]+2\times w+...+f[i-1][j-s\times v]+s\times w\} f[i][j]=max{f[i1][j],f[i1][jv]+w,f[i1][j2×v]+2×w+...+f[i1][js×v]+s×w}

可得, f [ i ] [ j − v ] = max ⁡ { f [ i − 1 ] [ j − v ] , f [ i − 1 ] [ j − 2 × v ] + w , f [ i − 1 ] [ j − 3 × v ] + 2 × w + . . . + f [ i − 1 ] [ j − ( s + 1 ) × v ] + ( s + 1 ) × w } f[i][j - v] = \max\{f[i-1][j - v], f[i-1][j-2\times v]+w, f[i-1][j-3\times v]+2\times w+...+f[i-1][j-(s+1)\times v]+(s+1)\times w\} f[i][jv]=max{f[i1][jv],f[i1][j2×v]+w,f[i1][j3×v]+2×w+...+f[i1][j(s+1)×v]+(s+1)×w}

f [ i ] [ j − v ] f[i][j - v] f[i][jv] f [ i ] [ j ] f[i][j] f[i][j]和对比可以发现,多了一项 f [ i − 1 ] [ j − ( s + 1 ) × v ] + ( s + 1 ) × w f[i-1][j-(s+1)\times v]+(s+1)\times w f[i1][j(s+1)×v]+(s+1)×w。如果计算出 f [ i ] [ j − v ] f[i][j - v] f[i][jv],那么是否能得到 f [ i ] [ j ] f[i][j] f[i][j]呢?举个栗子:

在这里插入图片描述

也就是说,知道前 s + 1 s+1 s+1项的最大值并不能计算出前 s s s项的最大值,因此不能采用完全背包的思想来优化多重背包。

二进制枚举

在计算状态的过程中,需要枚举第 i i i种物品的数量 [ 0 , s i ] [0,s_i] [0,si],这里采用一种更高效的枚举方式——二进制枚举。例如当 s i = 1023 s_i=1023 si=1023时,可以将第 i i i种物品“打包”为:

  • 0 0 0件一组
  • 1 1 1件一组
  • 2 2 2件一组
  • 4 4 4件一组
  • 512 512 512件一组

通过上述组与组之间的组合,可以表示出 [ 0 , 1023 ] [0,1023] [0,1023]之间的任意一个数。如果把每组物品看成是01背包中的一种物品(仅能选择一次),那么就相当于用 10 10 10个新物品来表示原来的第 i i i个物品,通过组合这 10 10 10个新物品就可以枚举出第 i i i个物品的全部方案。

时间复杂度

  • 状态数 n × m n\times m n×m
  • 通过上述思想,原来要枚举 s s s次,现在只需要枚举 l o g s logs logs

总的时间复杂的为 ( n × m × l o g s ) (n\times m\times logs) (n×m×logs)

代码实现

#include <iostream>
using namespace std;
const int N = 1010 * 12, M = 2010;
int v[N], w[N];
int f[M];
int main()
{
    int n, m, k = 0;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
    {
        int a, b, s;
        cin >> a >> b >> s;
        //二进制拆分
        for(int j = 1; j <= s; j *= 2)
        {
            v[++ k] = j * a;
            w[k] = j * b;
            s -= j;
        }
        //拆分后还有剩余
        if(s) v[++ k] = s * a, w[k] = s * b;
    }
    n = k; //拆分后实际的物品数量
    //01背包
    for(int i = 1; i <= n; i ++)
        for(int j = m; j >= v[i]; j --)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    cout << f[m];
    return 0;
}