• 数字图像处理教程1

    数字图像处理教程1

    0
    117
    7.5MB
    2018-11-06
    10
  • ARAP Surface Modeling

    Modeling tasks, such as surface deformation and editing, can be analyzed by observing the local behavior of the surface. We argue that defining a modeling operation by asking for rigidity of the local transformations is useful in various settings. Such formulation leads to a non-linear, yet conceptually simple energy formulation, which is to be minimized by the deformed surface under particular modeling constraints. We devise a simple iterative mesh editing scheme based on this principle, that leads to detail-preserving and intuitive deformations. Our algorithm is effective and notably easy to implement, making it attractive for practical modeling applications.

    0
    302
    3.92MB
    2017-09-15
    10
  • Volumetric Shape Registration Algorithm

    形状匹配 医学图像 Skuller A Volumetric Shape Registration Algorithm for Modeling Skull Deformities Medical Image Analysis Yusuf Sahilliog˘lu Ladislav Kavan We present an algorithm for volumetric registration of 3D solid shapes. In comparison to previous work on image based registration, our technique achieves higher efficiency by leveraging a template tetrahedral mesh. In contrast to point- and surface-based registration techniques, our method better captures volumetric nature of the data, such as bone thickness. We apply our algorithm to study pathological skull deformities caused by a particular condition, i.e., craniosynostosis. The input to our system is a pair of volumetric 3D shapes: a tetrahedral mesh and a voxelized object represented by a set of voxel cells segmented from computed tomography (CT) scans. Our general framework first performs a global registration and then launches a novel elastic registration process that uses as much volumetric information as possible while deforming the generic template tetrahedral mesh of a healthy human skull towards the underlying geometry of the voxel cells. Both data are high-resolution and differ by large non-rigid deformations. Our fully-automatic solution is fast and accurate, as compared with the state of the arts from the reconstruction and medical image registration fields. We use the resulting registration to match the ground-truth surfaces extracted from the medical data as well as to quantify the severity of the anatomical deformity

    0
    135
    4.31MB
    2017-09-15
    10
  • 签到新秀

    累计签到获取,不积跬步,无以至千里,继续坚持!
关注 私信
上传资源赚积分or赚钱