import pandas as pd
import numpy as np
media3 = pd.read_csv('../tmp/media3.csv', header='infer', error_bad_lines=False)
# 1.构建家庭成员标签
live_label = pd.read_csv('../data/table_livelabel.csv', encoding='gbk')
#时间列存在很多种写法,而且存在隔天的情况
live_label.开始时间 = pd.to_datetime(live_label.开始时间)
#将时间列变成datetime类型,好比较大小
live_label.结束时间 = pd.to_datetime(live_label.结束时间)
live_label['origin_time1'] = live_label.开始时间.apply(lambda x:
x.second + x.minute * 60 + x.hour * 3600)
live_label['end_time1'] = live_label.结束时间.apply(lambda x:
x.second + x.minute * 60 + x.hour * 3600)
print('查看星期:', live_label.星期.unique())
#有些节目跨夜,需进行隔夜处理
def geyechuli_xingqi(x):
dic = {'星期一':'星期二', '星期二':'星期三', '星期三':'星期四', '星期四':'星期五',
'星期五':'星期六', '星期六':'星期日', '星期日':'星期一'}
return x.apply(lambda y: dic[y.星期], axis=1)
ind1 = live_label.结束时间 < live_label.开始时间
label1 = live_label.loc[ind1, :].copy()
#日期可以变,后面以end_time比较
live_label.loc[ind1, '结束时间'] = pd.Timestamp('2018-06-07 23:59:59')
live_label.loc[ind1, 'end_time1'] = 24 * 3600
label1.iloc[:, 1] = pd.Timestamp('2018-06-07 00:00:00')
label1.iloc[:, -2] = 0
label1.iloc[:, 0] = geyechuli_xingqi(label1)
label = pd.concat([live_label, label1])
label = label.reset_index(drop = True) # 恢复默认索引
data_pindao = media3.copy()
label_ = label.loc[:, ['星期', 'origin_time1', 'end_time1', '频道', '适用人群']]
label_.columns = ['星期', 'origin_time1', 'end_time1', 'station_name', '适用人群']
media_ = data_pindao.loc[:, ['phone_no', '星期', 'origin_time1',
'end_time1', 'station_name', ]]
family_ = pd.merge(media_, label_, how = 'left', on=['星期', 'station_name'])
f = np.array(family_.loc[:, ['origin_time1_x', 'end_time1_x', 'origin_time1_y', 'end_time1_y']])
#lebel中的栏目记录分为四类:一类是只看了后半截,一类是全部都看了,
#一类是只看了前半截,一类是看了中间一截
n1 = np.apply_along_axis(lambda x:
(x[0] > x[2])&(x[0] < x[3])&(x[1] >= x[3]) , 1, f) # 1是行,2是列
n2 = np.apply_along_axis(lambda x:
((x[0] <= x[2])&(x[1] >= x[3])) , 1, f)
n3 = np.apply_along_axis(lambda x:
((x[1] > x[2])&(x[1] < x[3])&(x[0] <=x [2])), 1, f)
n4 = np.apply_along_axis(lambda x:
((x[0] > x[2])&(x[1] < x[3])), 1, f)
da1 = family_.loc[n1, :].copy()
da1['wat_time'] = da1.end_time1_y - da1.origin_time1_x
da2 = family_.loc[n2, :].copy()
da2['wat_time'] = da2.end_time1_y - da2.origin_time1_y
da3 = family_.loc[n3, :].copy()
da3['wat_time'] = da3.end_time1_x - da3.origin_time1_y
da4= family_.loc[n4, :].copy()
da4['wat_time'] = da4.end_time1_x - da4.origin_time1_x
sd = pd.concat([da1, da2, da3, da4])
grouped = pd.DataFrame(sd['wat_time'].groupby([sd['phone_no'], sd['适用人群']]).sum())
grouped1 = pd.DataFrame(data_pindao['wat_time'].groupby([data_pindao['phone_no']]).sum())
phone_no = []
for i in range(len(grouped)):
id = grouped.index[i][0]
if id in grouped1.index.unique():
shang = grouped['wat_time'][i] / grouped1[grouped1.index==id]
if shang.values > 0.16:
phone_no.append(grouped.index[i][0])
else:
continue
grouped2 = grouped.reset_index()
# 2.找出满足0.16标准的用户的家庭成员
aaa = pd.DataFrame(np.zeros([0, 3]), columns = grouped2.columns)
for k in phone_no:
aaa = pd.concat([aaa, grouped2.loc[grouped2.iloc[:, 0]== k, :]], axis=0)
a = [aaa.loc[aaa['phone_no'] == k, '适用人群'].tolist() for k in aaa['phone_no'].unique()]
a = pd.Series([pd.Series(a[i]).unique() for i in range(len(a))])
a = pd.DataFrame(a)
b = pd.DataFrame(aaa['phone_no'].unique())
c = pd.concat([a, b], axis=1)
c.columns = ['家庭成员', 'phone_no']
grouped1 = grouped1.reset_index()
users_label = pd.merge(grouped1, c, left_on='phone_no', right_on ='phone_no', how='left')
# 3.构建电视依赖度标签
di = media3.phone_no.value_counts().values < 10
users_label['电视依赖度'] = 0
users_label.loc[di, '电视依赖度'] = '低'
zhong_gao = [i for i in users_label.index if i not in di]
num = media3.phone_no.value_counts()
for i in zhong_gao:
if (users_label.loc[i, 'wat_time'] / num.iloc[i]) <= 3000:
users_label.loc[i, '电视依赖度'] = '中'
users_label.loc[users_label.电视依赖度 == 0, '电视依赖度'] = '高'
# 4.构建机顶盒名称标签
jidinghe = media3.loc[media3['res_type'] == 1, :]
jdh = jidinghe.res_name.groupby(jidinghe.phone_no).unique()
jdh = jdh.reset_index()
jdh.columns = ['phone_no', '机顶盒名称']
users_label = pd.merge(users_label, jdh, left_on='phone_no', right_on ='phone_no', how='left')
# 5.观看时间偏好(周末)
media_watch = media3.loc[:, ['phone_no', 'origin_time', 'end_time', 'res_type',
'星期', 'wat_time']]
media_f1 = media_watch.loc[media_watch['星期'] == '星期六', :]
media_f2 = media_watch.loc[media_watch['星期'] == '星期日', :]
media_freeday = pd.concat([media_f1, media_f2], axis=0)
media_freeday = media_freeday.reset_index(drop = True) # 恢复默认索引
#分割日期和时间,按空格号分开
T1 = [str(media_freeday.iloc[i, 1]).split(' ') for i in list(media_freeday.index)]
#T1是列表,time[i] = T1[[i]][2]表示T1中第i个列表的第二列赋值给time的第i个
media_freeday['origin_time'] = [' '.join(['2018/06/09', T1[i][1]]) for i in media_freeday.index]
media_freeday['origin_time'] = pd.to_datetime(media_freeday['origin_time'],
format = '%Y/%m/%d %H:%M')
point = ['2018/06/09 00:00:00', '2018/06/09 06:00:00', '2018/06/09 09:00:00',
'2018/06/09 11:00:00', '2018/06/09 14:00:00', '2018/06/09 16:00:00',
'2018/06/09 18:00:00', '2018/06/09 22:00:00', '2018/06/09 23:59:59']
lab = ['凌晨', '早晨', '上午', '中午', '下午', '傍晚', '晚上', '深夜']
sjd_num = pd.DataFrame()
for k in range(0, 8):
kk = (media_freeday['origin_time'] >= point[k]) & \
(media_freeday['origin_time'] < point[k+1])
sjd = media_freeday.loc[kk==True, ['phone_no', 'wat_time']]
sjd_new = sjd.groupby('phone_no').sum().sort_values('wat_time')
sjd_new['时间段偏好(周末)'] = lab[k]
sjd_num = pd.concat([sjd_num, sjd_new], axis=0)
sjd_num = sjd_num.reset_index() # 增加索引
sjd_num = sjd_num.sort_values('phone_no') # 以用户号排序
sjd_num = sjd_num.reset_index(drop = True) # 增加默认索引
#保留前3的标签
users = sjd_num['phone_no'].unique()
sjd_num_new = pd.DataFrame()
for m in users:
gd = sjd_num.loc[sjd_num['phone_no'] == m, :]
if len(gd)>3:
gd = gd.sort_values('wat_time').iloc[::-1, :]
gd = gd.iloc[:3, :]
else:
continue
sjd_num_new = pd.concat([sjd_num_new, gd], axis=0)
sjd_label = sjd_num_new['时间段偏好(周末)'].groupby(sjd_num_new['phone_no']).sum()
sjd_label = sjd_label.reset_index() # 增加索引
users_label = pd.merge(users_label, sjd_label, left_on='phone_no',
right_on ='phone_no', how='left')
# 6.构建付费频道月均收视时长标签
import re
ffpd_ind =[re.search('付费', str(i))!=None for i in media3.loc[:, 'station_name']]
media_ffpd = media3.loc[ffpd_ind, :]
ffpd = media_ffpd['wat_time'].groupby(media_ffpd['phone_no']).sum()
ffpd = ffpd.reset_index() # 增加索引
ffpd['付费频道月均收视时长'] = 0
for i in range(len(ffpd)):
if ffpd.iloc[i, 1] < 3600:
ffpd.iloc[i, 2] = '付费频道月均收视时长短'
elif 3600 <= ffpd.iloc[i, 1] <= 7200:
ffpd.iloc[i, 2] = '付费频道月均收视时长中'
else:
ffpd.iloc[i, 2
BryanDing
- 粉丝: 312
- 资源: 5578
最新资源
- Springboot + mybatis-plus + layui 实现的博客系统源代码全套技术资料.zip
- 基于SpringBoot的毕业设计选题系统源代码项目包含全套技术资料.zip
- GGJGJGJGGDGGDGG
- 基于JSP+Servlet的网上书店系统源代码项目包含全套技术资料.zip
- BlurAdmin 是一款使用 AngularJs + Bootstrap实现的单页管理端模版,视觉冲击极强的管理后台,各种动画效果
- 各种排序算法 Python 实现的源代码
- 自动化应用驱动的容器弹性管理平台解决方案
- 基于springboot+element的校园服务平台源代码项目包含全套技术资料.zip
- 金山PDF教育版编辑器
- 各种排序算法java实现的源代码.zip
- 毕业设计- 基于溯源图的APT攻击检测方法优化文档+源码+全部资料+高分项目.zip
- 基于 Kotlin 和 Quarkus 的后台管理系统脚手架,文档+源码+全部资料+高分项目.zip
- 本科毕设-基于超级账本fabric的茶叶溯源系统文档+源码+全部资料+高分项目.zip
- 基于 Vue 2 + Uni-app + Spring Boot 2 的农产品溯源系统,实现了农场管理、农产品 管理、农产品溯源管理、⽤⼾扫码溯源等功能。文档+源码+全部资料+高分项目.zip
- 基于Fabric超级账本为底层的企业资产管理、交易、防伪、溯源一体化的开源区块链解决方案文档+源码+全部资料+高分项目.zip
- 基于babylonjs和这个库,你可以进行联机调试材质,并提供光源调试,版本回溯,版本保存,材质库,聊天室等一系列功能文档+源码+全部资料+高分项目.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈