<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv3 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow â NEW|
|:-:|:-:|
|Automa
没有合适的资源?快使用搜索试试~ 我知道了~
yolov3算法裂缝检测-汽车车身凹陷-抓痕检测-汽车车身损伤检测+数据集
共2000个文件
txt:1996个
pdf:2个
md:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 106 浏览量
2024-04-27
10:10:49
上传
评论
收藏 706.62MB ZIP 举报
温馨提示
1、yolov3算法裂缝检测-汽车车身凹陷-抓痕检测-汽车车身损伤检测,包含训练好的yolo算法裂缝检测-汽车车身凹陷-抓痕检测-汽车车身损伤检测,以及PR曲线,loss曲线等等,和数据集 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码 https://blog.csdn.net/zhiqingAI/article/details/137371158
资源推荐
资源详情
资源评论
收起资源包目录
yolov3算法裂缝检测-汽车车身凹陷-抓痕检测-汽车车身损伤检测+数据集 (2000个子文件)
README.md 13KB
README.md 10KB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程1】.pdf 6.55MB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程2】.pdf 580KB
IMG_20220310_115922_jpg.rf.47aed01d02d4d5f270f198b17188d011.txt 2KB
IMG_20220310_120612_jpg.rf.8bd26197a00f06fcc8251546337df973.txt 2KB
IMG_20220310_115922_jpg.rf.a523b8accd79fe7f0418ae951fac55ee.txt 2KB
IMG_20220307_143450_jpg.rf.3dac8ec69f4d116e8baf6ffd617e183f.txt 2KB
IMG_20220307_182243_jpg.rf.ed322cdcd55a4b98632c180407af6c9e.txt 1KB
IMG_20220310_120612_jpg.rf.788538313dca2e9c6712e63c65308899.txt 1KB
crack_72_jpg.rf.1ae5cbec5e1285f69904bf97f281b367.txt 958B
IMG_20220310_120618_jpg.rf.50712c3f050c1f29f3b8bfb8f3261fc8.txt 877B
IMG_20220310_120618_jpg.rf.47745744240b784bd29f19151eac5d32.txt 832B
IMG_20220308_105335_jpg.rf.b43c70803cbdffad46006a08ae09e5fe.txt 746B
IMG_20220310_120623_jpg.rf.b2b5e28b0ccb9691ba834611524678c6.txt 720B
foto_32_jpg.rf.3d8285c1f0310cc364369c0f711f1b1b.txt 718B
image20_jpeg_jpg.rf.a2c8204ece0e5c9bfc53e5be19315239.txt 717B
IMG_20220310_120533_jpg.rf.48425e9d5e7e74ef03c5e878824a5f2d.txt 715B
IMG_20220310_115914_jpg.rf.87210c06ae49255f441010166c494a25.txt 670B
IMG_20220310_120628_jpg.rf.039925c74c9ed30caf543a0557f63fee.txt 665B
IMG_20220307_182253_jpg.rf.d47fd288ba89939b7e739fc1849195fc.txt 652B
2390_jpg.rf.1bdf1f32fb3beb3856de5292b54591eb.txt 647B
2390_jpg.rf.9f489aab8d83cdcde207ca77b9e061e2.txt 638B
IMG_20220307_143337_jpg.rf.de392e8173110718abb6573455e131dc.txt 617B
image20_jpeg_jpg.rf.9277c6177c68a965a84d69ac92e428ca.txt 577B
foto_31_jpg.rf.396a929f3ea0750676ab15fb3e34bef0.txt 560B
IMG_20220310_120616_jpg.rf.28d6d55ede1134ca867297841e5184de.txt 560B
How-to-Prevent-Wall-Cracks_jpg.rf.0999536c8bb6f2b546c2702ae8d2c31c.txt 542B
foto_30_jpg.rf.79ed640d6e94da5822fe4325b3c7d9c7.txt 532B
foto_28_jpg.rf.a1e398cf62d377392e477e18a659225e.txt 520B
IMG_20220308_122213_jpg.rf.b328e23cd08017bbe0578fa22ff01556.txt 501B
IMG_20220307_182253_jpg.rf.933a66be456abc7205a310ac1055216c.txt 501B
IMG_20220308_122213_jpg.rf.5fed5214710c4526837f9b10c4298000.txt 500B
2047_jpg.rf.ef922ece423d60e08e27278b9508918b.txt 480B
2047_jpg.rf.66be851a016931deeb01ec6f7116cf38.txt 477B
StepCracks415DJFs_jpg.rf.c1adabb12530933e5f29cd0ac77a0e76.txt 476B
foto_34_jpg.rf.202cf39f956c370558d3c9230eb1913d.txt 475B
2548_jpg.rf.63c261b1c0c9188785cfa8921bfacbc1.txt 474B
foto_9_jpg.rf.3223181b6027a3ababddf9e41b0850de.txt 473B
2548_jpg.rf.9f63ddc247573e729e90197426d59940.txt 472B
IMG_20220310_120533_jpg.rf.33be08ed2c5b12a92027604875ad48ea.txt 430B
IMG_20220309_120509_jpg.rf.9bdc573ee433ff77b8d4d2d9594569fb.txt 403B
55954f1b-bc09cedc-c18_jpg.rf.74a91cac9f87640d8acbc6369c30877d.txt 402B
smallscratches_original_23-jpg_123d8e22-4241-4f35-9e7b-6847c1c66377_jpg.rf.73f3dc10864cf1d48bac459687e45275.txt 402B
Wall-cracks-cornice_jpg.rf.7d282fe29ecabf2c3dc0cf0a8a9d0235.txt 400B
2017_jpg.rf.9a43ba34eb1e382b049b19b7a1427e30.txt 400B
04ff146c-13216e9b-c11_jpg.rf.4a4e4787c58a3f1053dc67ecd64f46b5.txt 399B
smallscratches_original_18-jpg_9b4d78fd-e6ad-46d0-ac9d-d3a53e83d6e2_jpg.rf.537650c5120f846a99b95565335dd337.txt 399B
How-to-fix-a-cracked-wall-step-by-step_jpg.rf.6acf4a69a3265fb0e3dccc71340719e2.txt 398B
smallscratches_original_18-jpg_2a49f25c-ecf6-46da-8060-c973c2a0e3c0_jpg.rf.c7f983047299444ed1712fd1aa870634.txt 398B
04ff146c-13216e9b-c11_jpg.rf.fefb943c1014ae446b8cfc8ff1f39bcf.txt 396B
smallscratches_original_23-jpg_689570d3-a0c9-4d1a-8877-813847b537a7_jpg.rf.6cb5ddaae87e39eaa50576fc7bb253a4.txt 395B
04ff146c-13216e9b-c11_jpg.rf.9fdb68dd527d304e89e65405ec4addb9.txt 395B
images660_jpg.rf.daa499291449f211896c3844dca2b568.txt 394B
2390_jpg.rf.46587f95d20536e31444eef32e84ef0c.txt 377B
IMG_20220308_122213_jpg.rf.c93a7db9eed4982661440e5dd94c0efa.txt 343B
IMG_20220307_143354_jpg.rf.32e06c6d42f898e77596a8eafd13ac0c.txt 333B
IMG_20220310_115851_jpg.rf.8122de806394b78ed2037d8668475070.txt 331B
images660_jpg.rf.a56e10fcdff99f5fd12b13367e7a83d4.txt 325B
smallscratches_original_18-jpg_3c88c640-8363-4f63-a413-e3e377cf03f9_jpg.rf.1e96761866c7a83b670de216ca6bd7ca.txt 322B
smallscratches_original_18-jpg_327f3d6c-a3ad-464b-83eb-658d6ad5a173_jpg.rf.231270c1c78e8de06564102f07669973.txt 318B
images320_jpg.rf.8f24ce5232e64cfa83277e0cf0111c69.txt 317B
smallscratches_original_14-jpg_a7efee5e-d05f-4175-b26a-cabf3bd71091_jpg.rf.44b8d89767a9bae5d1ec8cc22a82b8e9.txt 317B
smallscratches_original_18-jpg_c5056973-366a-4f87-b77c-841f433c2e75_jpg.rf.bbf4b65cbbe9aa0a89994b1b5cb32b3d.txt 317B
smallscratches_original_14-jpg_20bb6438-e3de-4800-ae19-bb640d741724_jpg.rf.8ef58df273a614dc06892db8d7cfb0f5.txt 317B
smallscratches_original_18-jpg_c5056973-366a-4f87-b77c-841f433c2e75_jpg.rf.cf476b5a338b21bb9d70a999d2ce461d.txt 317B
smallscratches_original_18-jpg_a67ef894-1149-456d-9349-39e0e77b99e3_jpg.rf.2c737d1f3ede0884fbfc695f44ff2d33.txt 316B
smallscratches_original_14-jpg_974226e1-f8cb-4237-adb7-564ca35100cd_jpg.rf.a825872c3942269c6f49a1bb1ec2d6e1.txt 316B
foto_5_jpg.rf.3d139116ef20c846a1a4ab0b2533350c.txt 315B
smallscratches_original_14-jpg_5b6338c9-4835-4df1-a23b-ba2b6f5f3b5d_jpg.rf.b32f700877c8e9ba7b2f1eb965232313.txt 314B
smallscratches_original_14-jpg_57988d2f-0183-49ed-9df5-a1dadef81a4d_jpg.rf.c40d24404da57b6f6c2a4b43945ebd77.txt 312B
smallscratches_original_23-jpg_f0865fad-8e2d-4002-8143-2b6fb6c60c77_jpg.rf.d64ba3cd994ba59c31d5cbe32d463d18.txt 307B
00787_jpg.rf.70af2b7cfda7fb8c00cbf7e15a63faff.txt 302B
foto_36_jpg.rf.82081a05d2c2d77a8a8cbbc85e5b6a3c.txt 291B
foto_37_jpg.rf.42569032d406cd252de58614bc0d9179.txt 288B
smallscratches_original_23-jpg_3eb78b39-296e-4046-a28d-41eff5c49b84_jpg.rf.6b245680ce19479476c56af4e908a7ab.txt 257B
foto_15_jpg.rf.10d348cebb6bb1e62d3112540b80f3e4.txt 250B
IMG_20220310_115937_jpg.rf.cc700584f7fb6663c021ebafdae1afe3.txt 242B
01370_jpg.rf.69ed29dd16872df3e6b11a84e1d22121.txt 241B
00101_jpg.rf.3f5185ceb1b4ade94810c699fcbb9e20.txt 241B
March-15-094731_jpg.rf.348e9a4a5f604576f627e53bb85e8960.txt 240B
IMG20220608103740_jpg.rf.8076074759425fa7bb4b0d504ad70920.txt 240B
foto_17_jpg.rf.6f46892afdd086cd48c0ce5ffd39bc3c.txt 239B
2376_png_jpg.rf.73722d502ac5dcdb76bffe6585a44307.txt 238B
foto_24_jpg.rf.d1459b259da996cc0dd54d87dfe0a201.txt 238B
2558_jpeg_jpg.rf.013c93c49c29a21d7dfcc43ddbfc12d7.txt 237B
smallscratches_original_25-jpg_6780c6c7-93b3-47ae-9e7f-4c628231e95e_jpg.rf.22d02156b31e1dafae40c772367cc556.txt 237B
smallscratches_original_25-jpg_3c9072da-63b0-4f02-aaf7-f0e785f59661_jpg.rf.a4c9224baf5b28e00b4b334c0fc32ba4.txt 237B
foto_3_jpg.rf.d07ca8d2adb00ae849d586a0643f8cb9.txt 237B
crack-repair2_jpg.rf.804c91c4380a2f5eed99cf55d321187e.txt 237B
de65bfc4563c4813bb25bb65eb6cfe76_jpg.rf.a743200e803b9519aa5045110190457d.txt 236B
smallscratches_original_26-jpg_a11832d1-8d4c-46e6-be06-066d143795cc_jpg.rf.04cb5d84215e31ed42df7a730f6681bb.txt 236B
crack_245_jpg.rf.79e6108957517979e79208b596271074.txt 236B
2028_JPEG_jpg.rf.aa0ada1de98ac194a3cf690e98e8e723.txt 235B
2558_jpeg_jpg.rf.160d621e3b2bedb881589d77b47d9ea3.txt 235B
smallscratches_original_18-jpg_78413ccf-02ee-441e-bafb-ef87a29d9bab_jpg.rf.446f6a6af4c6935e70782c6641e53f3e.txt 235B
smallscratches_original_18-jpg_b1a3cc62-2bc9-4d2c-bc8f-aee6837c2d21_jpg.rf.d6ca16e694fb95635379b57d9a9d13ff.txt 235B
smallscratches_original_25-jpg_6cb0d6bb-6376-452a-9ea6-27e925557504_jpg.rf.f56ffca8c74699880cfcbdf17236afb9.txt 234B
2017_jpg.rf.bbbd59126919e17dfcb281ea6bb2479d.txt 234B
Wall-cracks-cornice_jpg.rf.188daf12e1d2f332ee04005661ba05e5.txt 232B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 980
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 小红书爆款模板 一天轻松引流几十创业粉.mp4
- 小红书笔记带货与直播流程超详细拆解分析设计.mp4
- 小红书店铺实战运营起店开店认知+实操课程.mp4
- 小红薯电商实操课小红书开店实操必学课.mp4
- 小红书零食共创新手开个店铺发发笔记賺钱.mp4
- 小米SU7Ultra订单生成器.mp4
- 小猫咪抽奖系统1.11(有卡密功能).mp4
- AEB距离模型 考虑前车不同运动状态的AEB距离模型 AEB-simulink距离模型 版本:prescan8.5 Matlab版本可以降 内容: 1、考虑了前车不同运动状态、驾驶员反应时间、制动器响
- 小悟空1.5 ppt生成 小说创作 视频脚本等.mp4
- 融合天文导航与INS的定位示例
- 校园点餐订餐外卖跑腿Java源码.mp4
- 小猿口算v3.97.3高级会员版-口算作业拍题解析.mp4
- cruise软件模型,串联混动ECMS,cruise增程混动仿真模型,A-ECMS控制策略,Cruise混动仿真模型,串联混动汽车动力性经济性仿真 关于模型 1.本模型是基于增程混动架构搭建的cru
- 笑话全集app 心情不好不妨看看笑话吧.mp4
- 基于faster-RCNN的PCB元器件缺陷检测源代码+数据集+模型权重文件
- 新苹果影视盒子v1.5.50内置源版点播+直播.mp4
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功