<div align="center">
<p>
<a href="https://yolovision.ultralytics.com/" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
All [Models](https://github.
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv8火焰检测代码+训练好的fire模型+4000数据集
共2000个文件
txt:1965个
yaml:17个
md:14个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 153 浏览量
2024-04-16
23:17:52
上传
评论 1
收藏 494.22MB ZIP 举报
温馨提示
1、YOLOv8训练好的火焰检测模型,并包含4000张标注好的火焰数据集,标签格式txt,类别名为fire, 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 5、采用pytrch框架,代码是python的
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv8火焰检测代码+训练好的fire模型+4000数据集 (2000个子文件)
README.md 28KB
README.md 13KB
README.md 7KB
README.md 5KB
readme.md 5KB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程2】.md 5KB
README.md 5KB
README.md 3KB
README.md 3KB
readme.md 3KB
README.md 2KB
README.md 2KB
README.md 1KB
README.md 356B
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程1】.pdf 6.55MB
【yolov3-YOLOv5-yolov7-yolov8环境配置-教程2】.pdf 580KB
setup.py 4KB
train_test.py 581B
fire_0_512.txt 4KB
fire_0_1707.txt 3KB
fire_0_1497.txt 3KB
fire_0_4379.txt 2KB
fire_0_1615.txt 2KB
fire_0_1177.txt 2KB
fire_0_1669.txt 2KB
fire_0_1801.txt 2KB
fire_0_1503.txt 2KB
fire_0_1109.txt 2KB
fire_0_1061.txt 2KB
fire_0_1067.txt 2KB
fire_0_1670.txt 1KB
fire_0_1735.txt 1KB
fire_0_1718.txt 1KB
fire_0_1160.txt 1KB
fire_0_4437.txt 1KB
fire_0_4417.txt 1KB
fire_0_4502.txt 1KB
fire_0_1039.txt 1KB
fire_0_1031.txt 1KB
fire_0_1530.txt 1KB
fire_0_1327.txt 1KB
fire_0_1710.txt 1KB
fire_0_1773.txt 1KB
fire_0_1674.txt 1KB
fire_0_558.txt 1KB
fire_0_3038.txt 1KB
fire_0_1483.txt 1KB
fire_0_1528.txt 1KB
fire_0_1509.txt 1KB
fire_0_913.txt 1KB
fire_0_1206.txt 1KB
fire_0_759.txt 1KB
fire_0_719.txt 1KB
fire_0_4806.txt 1KB
fire_0_1058.txt 1KB
fire_0_1245.txt 1KB
fire_0_1810.txt 1KB
fire_0_877.txt 1KB
fire_0_1179.txt 1KB
fire_0_1374.txt 1020B
fire_0_4580.txt 1013B
fire_0_934.txt 1003B
fire_0_821.txt 1001B
fire_0_657.txt 990B
fire_0_1090.txt 984B
fire_0_4472.txt 982B
fire_0_4590.txt 969B
fire_0_1702.txt 965B
fire_0_889.txt 964B
fire_0_4414.txt 961B
fire_0_1290.txt 926B
fire_0_1581.txt 915B
fire_0_1400.txt 898B
fire_0_1781.txt 885B
fire_0_1070.txt 885B
fire_0_833.txt 875B
fire_0_4424.txt 874B
fire_0_817.txt 867B
fire_0_4382.txt 865B
fire_0_4628.txt 862B
fire_0_1516.txt 861B
fire_0_1680.txt 850B
fire_0_900.txt 822B
fire_0_540.txt 817B
fire_0_4480.txt 814B
fire_0_1684.txt 813B
fire_0_507.txt 809B
fire_0_926.txt 807B
fire_0_745.txt 807B
fire_0_2242.txt 805B
fire_0_1159.txt 792B
fire_0_1790.txt 790B
fire_0_1054.txt 785B
fire_0_1156.txt 781B
fire_0_1021.txt 779B
fire_0_706.txt 766B
fire_0_1795.txt 746B
fire_0_1561.txt 745B
fire_0_697.txt 739B
fire_0_4898.txt 735B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- weixin_575699552024-10-25资源不错,内容挺好的,有一定的使用价值,值得借鉴,感谢分享。
stsdddd
- 粉丝: 3w+
- 资源: 951
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- ks滑块加密算法与源代码
- 医护人员检测23-YOLOv8数据集合集.rar
- 1.电力系统短路故障引起电压暂降 2.不对称短路故障分析 包括:共两份自编word+相应matlab模型 1.短路故障的发生频次以及不同类型短路故障严重程度,本文选取三类典型的不对称短路展开研究
- C#连接sap NCO组件 X64版
- 开源基于51单片机的多功能智能闹钟设计,课设毕设借鉴参考
- 深度强化学习电气工程复现文章,适合小白学习 关键词:能量管理 深度学习 强化学习 深度强化学习 能源系统 优化调度 编程语言:python平台 主题:用于能源系统优化调度的深度强化学习算法的性能比较
- 泰州市2005-2024年近20年历史气象数据下载
- 盐城市2005-2024年近20年历史气象数据下载
- 连云港市2005-2024年近20年历史气象数据下载
- 南通市2005-2024年近20年历史气象数据下载
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功