<div align="center">
<p>
<a href="https://yolovision.ultralytics.com/" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
All [Models](https://github.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
yolov8小型旋翼无人机检测,训练好的权重,可以直接使用,并附有数据集,数据集目录已经配置好,yolo格式(txt)的标签,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8等算法可以直接进行训练模型, 数据集和检测结果参考: https://blog.csdn.net/zhiqingAI/article/details/124230743 https://blog.csdn.net/zhiqingAI/article/details/136952543 数据集配置目录结构data.yaml: nc: 1 drone
资源推荐
资源详情
资源评论
收起资源包目录
yolov8小型旋翼无人机检测权重+数据集+详细教程 (888个子文件)
events.out.tfevents.1711755392.USER-20231125JB.5856.0 371KB
CITATION.cff 612B
setup.cfg 2KB
CNAME 21B
inference.cpp 12KB
inference.cpp 6KB
main.cpp 4KB
main.cpp 2KB
style.css 1KB
results.csv 33KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 2KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
favicon.ico 9KB
MANIFEST.in 200B
tutorial.ipynb 33KB
hub.ipynb 4KB
train_batch2.jpg 778KB
train_batch1.jpg 744KB
train_batch22142.jpg 719KB
train_batch22141.jpg 685KB
train_batch22140.jpg 684KB
train_batch0.jpg 669KB
val_batch2_pred.jpg 587KB
val_batch2_labels.jpg 577KB
val_batch0_pred.jpg 440KB
val_batch0_labels.jpg 427KB
val_batch1_pred.jpg 334KB
val_batch1_labels.jpg 321KB
labels_correlogram.jpg 238KB
labels.jpg 155KB
bus.jpg 134KB
zidane.jpg 49KB
extra.js 3KB
LICENSE 34KB
predict.md 40KB
train.md 38KB
predict.md 36KB
quickstart.md 34KB
track.md 31KB
README.md 28KB
README.zh-CN.md 27KB
train.md 25KB
sam.md 25KB
yolov8.md 24KB
predict.md 23KB
quickstart.md 23KB
model-deployment-options.md 23KB
yolov8.md 23KB
cfg.md 23KB
sam.md 22KB
yolov8.md 21KB
track.md 21KB
openvino.md 20KB
yolov8.md 19KB
yolov8.md 19KB
yolov8.md 19KB
yolov8.md 19KB
index.md 19KB
fast-sam.md 19KB
yolov8.md 19KB
predict.md 19KB
quickstart.md 19KB
yolov8.md 18KB
train.md 18KB
pose.md 18KB
yolov8.md 18KB
sam.md 17KB
yolov8.md 17KB
yolo-common-issues.md 17KB
segment.md 17KB
train_custom_data.md 17KB
quickstart.md 17KB
classify.md 17KB
track.md 16KB
detect.md 16KB
train.md 16KB
roboflow.md 16KB
index.md 16KB
yolov5.md 16KB
track.md 16KB
sam.md 16KB
segment.md 15KB
predict.md 15KB
fast-sam.md 15KB
train.md 15KB
sam.md 15KB
pose.md 15KB
model_export.md 15KB
sam.md 15KB
yolov5.md 15KB
共 888 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
- 春日恭介2024-05-21资源很好用,有较大的参考价值,资源不错,支持一下。
stsdddd
- 粉丝: 3w+
- 资源: 973
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Matlab_ColorBrewer颜色映射的完整调色板。通过方案名称和映射长度进行简单选择.zip
- Matlab_CFDTool一个易于使用的OpenFOAM SU2 CFD仿真工具箱.zip
- Matlab_CIAtah宣布猎豹是一个软件包,用于钙成像分析的单光子和双光子成像数据集文档.zip
- Matlab_DL解决了大量的emimo问题.zip
- Matlab_CV2X模式4车载通信性能分析模型.zip
- Matlab_DeepSqueak v3使用机器视觉加速生物声学研究.zip
- Matlab_ECO跟踪器的Matlab实现.zip
- Matlab_ERPLAB Toolbox是一个免费的开源Matlab软件包,用于分析ERP数据,它与EEGLAB T.zip
- 系统总线和具有基本输入输出的总线接口实验
- Matlab_EEGLAB是一个在Matlab上运行的电生理信号的开源信号处理环境,由SCCNUCSD开发.zip
- Matlab_GNSS惯性和多传感器组合导航系统原理.zip
- Matlab_FECGSYN工具箱用于心电图和胎儿心电图模拟.zip
- Matlab_GRACE_Matlab_Toolbox.zip
- Matlab_Handson教程的全局优化在Matlab中.zip
- Matlab_ICCV2019论文联合组特征选择和判别滤波学习鲁棒视觉目标跟踪的Matlab实现.zip
- Matlab_HW3使用Matlab计算光场再聚焦.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功